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Abstract

Emerging workloads, such as graph processing and ma-
chine learning are approximate because of the scale of data
involved and the stochastic nature of the underlying algo-
rithms. These algorithms are often distributed over multiple
machines using bulk-synchronous processing (BSP) or other
synchronous processing paradigms such as map-reduce. How-
ever, data-parallel processing primitives such as repeated
barrier and reduce operations introduce high synchroniza-
tion overheads. Hence, many existing data-processing plat-
forms use asynchrony and staleness to improve data-parallel
job performance. Often, practitioners simply change the syn-
chronous communication to asynchronous between the worker
nodes in the cluster. This improves the throughput of data
processing but results in a poor accuracy of the final output
since different workers may progress at different speeds and
process inconsistent intermediate outputs.

In this paper, we present ASAP, a model that provides asyn-
chronous and approximate processing semantics for data-
parallel computation. ASAP provides fine-grained worker
synchronization using NOTIFY-ACK semantics that allows in-
dependent workers to run asynchronously. ASAP also provides
stochastic reduce that provides approximate but guaranteed
convergence to the same result as an aggregated all-reduce.
In our results, we show that ASAP can reduce synchronization
costs and provides 2-10X speedups in convergence and up to
10X savings in network costs for distributed machine learning
applications and provides strong convergence guarantees.

1. Introduction

Large-scale distributed data-parallel computation often pro-
vides two fundamental constructs to scale-out local data pro-
cessing. First, a merge or a reduce operation to allow the work-
ers to merge updates from all other workers and second, a bar-
rier or an implicit wait operation to ensure that all workers can
synchronize and operate at similar speeds. For example, the
bulk-synchronous model (BSP) is a general paradigm to model
data-intensive distributed processing [62]. Here, each node af-
ter processing a specific amount of data synchronizes with the
other nodes using barrier and reduce operations. The BSP
model is widely used to implement many big data applications,
frameworks and libraries such as in the areas of graph process-
ing and machine learning [1, 28, 33, 36, 45, 55]. Other syn-
chronous paradigms such as the map-reduce [26, 68], the pa-
rameter server [25, 43] and dataflow based systems [6, 39, 48]
use similar constructs to synchronize outputs across multiple
workers.

There is an emerging class of big data applications such
as graph-processing and machine learning (ML) that are ap-
proximate because of the stochastic nature of the underlying
algorithms that converge to the final solution in an iterative
fashion. These iterative-convergent algorithms operate on
large amounts of data and unlike traditional TPC style work-
loads that are CPU bound [53], these iterative algorithms incur
significant network and synchronization costs by communicat-
ing large vectors between their workers. These applications
can gain an increase in performance by reducing the synchro-
nization costs in two ways. First, the workers can operate over
stale intermediate outputs. The stochastic algorithms operate
over input data in an iterative fashion to produce and commu-
nicate intermediate outputs with other workers. However, it is
not imperative that the workers perform a reduce on all the
intermediate outputs at every iteration. Second, the synchro-
nization requirements between the workers may be relaxed,
allowing partial, stale or overwritten outputs. This is possible
because in some cases the iterative nature of data processing
and the stochastic nature of the algorithms may provide an
opportunity to correct any errors introduced from staleness or
incorrect synchronization.

There has been recent research that uses this property by
processing stale outputs, or by removing all synchroniza-
tion [56, 64]. However, naïvely converting the algorithms
from synchronous to asynchronous can increase the through-
put but may not improve the convergence speeds. This is
because an increase in data processing speeds may not pro-
duce the final output with same accuracy and in some cases
may even converge the underlying algorithm to an incorrect
value [47].

Hence, to provide asynchronous and approximate semantics
with reasonable correctness guarantees for iterative conver-
gent algorithms, we present Asynchronous and Approximate
abstractions for data-parallel computation. To facilitate ap-
proximate processing, we describe stochastic reduce, a sparse
reduce primitive, that mitigate the communication and syn-
chronization costs by performing the reduce operation with
fewer workers. We construct a reduce operator by choos-
ing workers based on sparse, directed expander graphs on
underlying communication nodes that mitigates CPU and net-
work costs during reduce for iterative convergent algorithms.
Furthermore, stochastic reduce convergence is directly pro-
portional to the spectral gap of the underlying machine graph
that allows practitioners to introduce adjust network structure
based on available network bandwidth.

To reduce synchronization costs, we propose a fine-
grained NOTIFY-ACK based synchronization that provides



performance improvement over barrier based methods.
NOTIFY-ACK allows independent worker threads (such as
those in stochastic reduce) to run asynchronously instead of
blocking on a coarse-grained global barrier at every iter-
ation. Additionally, NOTIFY-ACK provides stronger consis-
tency than simply using a barrier to implement synchronous
data-parallel processing.

ASAP is not a programming model (like map-reduce [26])
or is limited to a set of useful mechanisms. It introduces
semantics for approximate and asynchronous execution which
are often amiss in the current flurry of distributed machine
learning systems which often use asynchrony and staleness to
trade-off the input processing throughput with output accuracy.
The contributions of this paper are as follows:
• We present ASAP, an asynchronous approximate compu-

tation model for large scale data parallel applications. We
present an inter-discplinary approach where we combine al-
gorithm design with the hardware properties of low latency
networks to design a distributed data-parallel system. We
use stochastic reduce for approximate semantics with fine-
grained synchronization based on NOTIFY-ACK to allow
independent threads run asynchronously.

• With stochastic reduce, we present a spectral gap measure
that allows developers to reason why some node commu-
nication graphs may converge faster than others and can
be a better choice for connecting machines with stochastic
reduce. This allows developers to compare the flurry of
recent papers that propose different network topologies for
gradient propagation such as ring, tree etc.

• We apply ASAP to build a distributed learning framework
over RDMA. In our results, we show that our system can
achieve strong consistency, provable convergence, and pro-
vides 2-10X in convergence and up to 10X savings in net-
work costs.

2. Background
Large-scale problems such as training image classification
models, page-rank computation and matrix factorization op-
erate on large amounts of data. As a result, many stochas-
tic algorithms have been proposed that make these problem
tractable for large data by iteratively approximating the solu-
tion over small batches of data. For example, to scale better,
matrix factorization methods have moved from direct and
exact factorization methods such as singular value decomposi-
tion to iterative and approximate factorization using gradient
descent style algorithms [29]. Hence, many algorithms that
discover relationships within data have been re-written in the
form of distributed optimization problems that iterate over
the input data and approximate the solution. In this paper,
we focus on how to provide asynchronous and approximate
semantics to distributed machine learning applications. These
optimizations can be beneficial to end users when they run
their distributed machine learning jobs across multiple cloud
instances [38] or by the cloud provider themselves when train-
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Figure 1: The machine learning training process.
ing a model for vision or speech recognition [19, 34, 35].

2.1. Distributed Machine Learning

Machine learning algorithms process data to build a training
model that can generalize over new data. The training output
model, or the parameter vector (represented by w) is computed
to perform future predictions over new data. To train over
large data, ML methods often use the Stochastic Gradient
Descent (SGD) algorithm that can train over a single (or a
batch) of examples over time. The SGD algorithm processes
data examples to compute the gradient of a loss function. The
parameter vector is then updated based on this gradient value
after processing each training data example. After a number
of iterations, the parameter vector or the model converges
towards acceptable error values over test data.

Figure 1 shows the ML training process. To scale out the
computation over multiple machines, the SGD algorithm can
be distributed over a cluster by using data parallelism, by
splitting the input (x1,x2,..,xn) or by model parallelism, by
splitting the model (w1, w2,..,wn). The goal of parallelization
is not just to improve throughput but also to maintain low error
rates (e1, e2,..,en). In data-parallel learning using BSP, the
parallel model replicas train over different machines. After
a fixed number of iterations, these machines synchronize the
parameter models that have been trained over the partitioned
data with one-another using a reduce operation. For example,
each machine may perform an average of all incoming models
with its own model, and proceed to train over more data. In the
BSP model, there is a global barrier that ensures that models
train and synchronize intermediate inputs at the same speeds.
Hence, distributed data-parallel ML suffers from additional
synchronization and communication costs over a single thread.

Figure 2 shows the interconnect speeds for a single com-
puter buses, ethernet and infiniBand. Modern buses can send
data at higher throughputs with increasingly lower latencies.
As a result, software costs for synchronization, such as in a
reduce operation have begun to contribute significantly to-
wards overall job times in distributed machine learning and
other iterative data-parallel tasks. The reduce operation re-
quires communicating updates to all other machines when
training using the BSP or the map-reduce model. However,
since these algorithms are iterative-convergent, and can tol-
erate errors in the synchronization step, there has been re-
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Figure 2: Decreasing latency and increasing local and network
bandwidths over the years. The latency measurements are for
64B packets.
cent work on communicating stale intermediate parameter
updates and exchanging parameters with little or no synchro-
nization [11, 18, 56].

Past research has found that simply removing the barrier
may speed up the throughput of the system [15, 64]. However,
this may not always improve the convergence speed and may
even converge the system to an incorrect final value [47]. Since
the workers do not synchronize, and communicate model pa-
rameters at different speeds, the workers process the data
examples at a higher throughput. However, since the different
workers train at different speeds, the global model skews to-
wards the workers that are able to process and communicate
their models. Similarly, using bounds for asynchrony may
appear to work for some workloads. But determining these
bounds can be empirically difficult and for some datasets these
bounds may be no better than synchronous. Furthermore, if a
global single model is maintained and updated without locks
(as in [56]), a global convergence may only be possible if
the parameter vector is sparse. Finally, maintaining a global
single model in a distributed setting results in lots of wasted
communication since a lot of the useful parameter updates are
overwritten [15, 51].

The distributed parameter-server architecture limits net-
work traffic by maintaining a central master [6, 25, 43]. Here,
the server coordinates the parameter consistency amongst all
other worker machines by resetting the workers’ model af-
ter every iteration and ensures global consensus on the final
model. Hence, a single server communicates with a large
number of workers that may result in network congestion at
the edges which can be mitigated using a distributed param-
eter server [43]. However, the parameter server suffers from
similar synchronization issues as BSP style systems – a syn-
chronous server may spend a significant amount of time at
the barrier while an asynchronous server may reduce with
few workers’ models and produce inconsistent intermediate
outputs and this can slow down convergence. Hence, the pa-
rameter server architecture can benefit from a fine-grained
synchronization mechanisms that have low overheads.

To provide asynchronous and approximate processing se-
mantics with consistency and convergence guarantees, we
introduce ASAP that provides approximate processing by syn-
chronizing each worker with a subset of workers at each itera-
tion. Additionally, ASAP provides fine-grained synchroniza-
tion that improves convergence behavior and reduces synchro-
nization overheads over a barrier. We describes both these
techniques next.

3. Stochastic reduce for approximate processing
In this section, we describe how data-parallel applications can
use stochastic reduce to mitigate network and processing times
for iterative ML algorithms. More importantly, we prove that
convergence speeds of algorithms depend on the spectral-gap
values of underlying node communication graph of the cluster.

With distributed ML parallel workers train on input data
over model replicas. They synchronize with one-another after
few iterations and perform a reduce over intermediate model
updates and continue to train. This synchronization step is re-
ferred to as the all-reduce step. In the parameter server model,
this synchronization is performed at a single or distributed
master [25, 44]. To mitigate the reduce overheads, efficient
all-reduce has been explored in the map-reduce context where
nodes perform partial aggregation in a tree-style to reduce
network costs [17, 12, 66]. However, these methods decrease
the network and processing costs at the cost of increasing the
latency of the reduce operation proportional to the height of
the tree.

The network of worker nodes, i.e. the node communication
graph of the cluster determines how rapidly the intermediate
model parameters are propagated to all other machines and
also determines the associated network and processing costs.
This network information diffusion or connectedness should
be high for faster convergence but imposes higher network
costs. For example, all-reduce and the parameter server rep-
resent different types of communication graphs that describe
how the workers communicate the intermediate results as
shown in Figure 3. In the all-reduce architecture, all machines
exchange parameters while in a parameter server architecture
a central node coordinates the parameter update. Intuitively,
when the workers communicate with all machines at every
reduce step, this network is densely connected and conver-
gence is rapid since all the machines get the latest intermediate
updates. However, if the network of nodes is sparsely con-
nected, the convergence may be slow due to stale, indirect
updates being exchanged between machines. However, with
sparse connectivity, there are savings in network and CPU
costs (fewer updates to process at each node), that can result
in an overall speedup in job completion times. Furthermore,
if there is a heterogeneity in communication bandwidths be-
tween the workers (or between the workers and the master, if
a master is used), many workers may end up waiting. As an
example, if one is training using GPUs over a cluster, GPUs
within one machine can synchronize at far lower costs over
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the PCI bus than over the network. Hence, frequent reduce
across interconnects with varying latency may introduce a
large synchronization cost for all workers. Hence, we propose
using sparse or stochastic reduce based on sparse node graphs
with strong connectivity properties.

The goal of stochastic reduce is to improve performance
by reducing network and processing costs by using sparse
reduce graphs. Recent work has shown that every dense graph
can be reduced to a sparse graph with fewer edges [9] with
similar network information diffusion properties. This is a
significant result since it implies that stochastic reduce can be
applied to save network costs for almost any network topol-
ogy. Expander graphs, which are sparse graphs with strong
connectivity properties have been explored in the context of
data centers and distributed communities to communicate data
with low overheads [60, 61]. An expander graph has fixed
out-degrees as the number of vertices increase while maintain-
ing approximately the same connectivity between the vertices.
Hence, using directed expander graphs for stochastic reduce
provides approximately the same convergence as all-reduce
while keeping network costs low as the number of nodes in-
crease. Directed graphs can use the one-sided properties of
RDMA networks that allow for fast, asynchronous communi-
cation. Furthermore, we use low-degree graphs for less overall
communication costs. Both these properties ensure better scal-
ability for peer-to-peer communication fabrics like RDMA
over Infiniband.

To measure the convergence of algorithms that use stochas-
tic reduce, i.e. to compare the sparsity of the adjacency graph
of communication, we calculate the spectral gap of the ad-
jacency matrix of the network of workers. The spectral gap
is the difference between the two largest singular values of
the adjacency matrix normalized by the in-degree of every
node. The spectral gap of a communication graph determines
how rapidly a distributed, iterative sparse reduce converges
when performing distributed optimization over a network of
nodes represented by this graph. For faster convergence, this
value should be as high as possible. Hence, densely-connected
graphs have a high spectral gap value and converge faster but
can have high communication costs. Conversely, if the graph
is disconnected, the spectral gap value is zero, and with parti-
tioned data, the model may never converge to a correct value.
Hence, there is a research opportuniy in designing networks
that have high-spectral gap but have low communication costs
by using low-degree nodes.

Past work using partial-reduce for optimization problems
has explored fixed communication graphs such as butterfly
or logarithmic sequences [11, 42]. These communication se-
quences provide fixed network costs but may not generalize to
networks with complex topologies or networks with dissimilar
bandwidth edges such as distributed GPU environments. More
importantly, ASAP introduces the ability to reason conver-
gence using the spectral gap of a network graph and developers
can reason why some node graphs have stronger convergence

properties. Finally, existing approaches use a global barrier
after each iteration, incurring extra synchronization overheads
which can be reduced using ASAP’s fine-grained synchroniza-
tion described in the next section. In the next section, we prove
that this convergence can be compared using the spectral gap
of the node graphs.

3.1. Stochastic reduce convergence analysis

In this section, we analyze the conditions for convergence for
stochastic reduce for any distributed optimization problem that
achieves consensus by communicating information between
nodes. We show that the rate of convergence for a set of nodes
is dependent on the spectral gap of the transition matrix of
the nodes. The transition matrix represents the probability of
transition of gradient updates from one node to another and
is the ratio of the adjacency matrix/in-degree of each node.
Mathematically, the optimization problem is defined on a
connected directed network and solved by n nodes collectively,

min
xxx∈X ⊆Rd

f̄ (xxx) :=
n

∑
i=1

fi(xxx). (3.1)

The feasible set X is a closed and convex set in Rd and is
known by all nodes, whereas fi : X ∈ R is a convex func-
tion known by the node i. We also assume that fi is L-
Lipschitz continuous over X with respect to the Euclidean
norm ‖·‖. The network G = (N ,E ), with the node set
N = [n] := {1,2, · · · ,n} and the edge set E ⊆N ×N , spec-
ifies the topological structure on how the information is spread
amongst the nodes through local node interactions over time.
Each node i can only send and retrieve information as defined
by the node communication graph N (i) := { j | ( j, i) ∈ E }
and itself.

Our goal is to measure the overall convergence time (also
known as mixing time in Markov chain literature) based on
a specific network topology. We specifically use directed
graphs as using undirected graph such as in the case of pa-
rameter servers [25, 43] and exchange based peer-to-peer pro-
tocols [65] require synchronization. Furthermore, directed
graph style communication improves performance in-case of
RDMA networks using one-sided communication.

In this algorithm, each node i keeps a local estimate xxxi and
a model variable wwwi to maintain an accumulated sub-gradient.
At iteration t, to update wwwi, each node needs to collect the
model update values of its neighbors which is the gradient
value denoted by ∇ fi(wwwi

t), and forms a convex combination
with an equal weight of the received information. The learning
rate is denoted by ηt . Hence, the updates received by each
machine can be expressed as:

wwwi
t+1/2← wwwi

t −ηt∇ fi(wwwi
t) (3.2)

wwwi
t+1←

1
|N i

in|
∑

j∈N i
in

www j
t+1/2
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In order to make the above algorithm converge correctly, we
need a network over which each node has the same influence.
To understand and quantify this requirement, we denote the ad-
jacency matrix as AAA, i.e. Ai j = 1 if ( j, i) ∈A and 0 otherwise,
and denote PPP as the transition matrix after scaling each i-th
row of AAA by the in-degree of node i, i.e. PPP = diag(dddin)

−1 AAA,
where dddin ∈ Rk and din(i) equals the in-degree of node i. For
ease of illustration, we assume that degree d = 1 and initial
wi

0 = 0. We denote sub-gradient and model updates over time
as gggt = (g1

t ,g
2
t , . . . ,g

k
t ), and wwwt = (w1

t ,w
2
t , . . . ,w

k
t )
>. Then the

updates can be expressed as :

www1 =−η0PPPggg0

www2 =−η0PPP2ggg0−η1PPPggg1

...

wwwt =−η0PPPtggg0−η1PPPt−1ggg1−·· ·−ηt−1PPPgggt−1

wwwt =−
t−1

∑
k=0

ηkPPPt−kgggk (3.3)

It can be easily verified that PPP∞ := limt→∞ PPPt = 111πππ>, where πππ

is a probability distribution (known as stationary distribution).
Thus, πi here represents the influence that node i plays in the
network. Therefore, to take a fair treatment of each node,
πi =

1
k is desired, which is equivalent to when the row sums

and column sums of the transition matrix PPP are all equal to
one, i.e. PPP is a doubly stochastic matrix. Hence, in the context
of our network setting, we need a network whose nodes have
the same in-degree. Intuitively, this means that as long as all
nodes are connected and each node has the same influence i.e.
sends its gradients to equal number of neighbors, the overall
problem will converge correctly even if sparsely connected
graphs may require a large number of iterations. Indeed, when
fi is convex, the convergence results have been established
under this assumption [27, 49].

Besides being regular, the network N (i) should also be
constructed in a way such that the information can be effec-
tively spread out over the entire network, which is closely
related with the concept of spectral gap. We calculate the
spectral gap of the network as 1−σ2(PPP), where σ2(PPP) is the
second largest singular value of P. The transition matrix P is
defined as A/d, where A is the adjacency matrix (including
self-loop) and d is the in-degree (including self-loop). The
spectral gap here is defined as σ1(PPP)−σ2(PPP). But σ1(PPP) the
largest singular value should be 1. So the gap equals 1−σ2(PPP),
where σ2(PPP) is the second largest singular value of P. We de-
note σ1(PPP) ≥ σ2(PPP) ≥ ·· · ≥ σk(PPP) ≥ 0, where σi(PPP) is the
ith largest singular value of P. Clearly, σ1(PPP) = 1. From
the expression (3.3), we see that the speed of convergence
depends on how fast PPPt converges to 1

k 111111>, and based on the
Perron-Frobenius theory [57], we have,

∥∥∥∥PPPtxxx− 1
n

111
∥∥∥∥

2
≤ σ2(PPP)t ,
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Figure 3: Figure (a) shows all-reduce, Spectral Gap (SG) for
6/25 nodes, SG-6:1.00, SG-25:1.00. Figure (b) shows parame-
ter server, SG-6:0.75, SG-25:0.68. Figure (c) shows an expander
graph with SG-6:0.38, SG-25:0.2 Figure (d) shows a chain graph
with SG-6: 0.1, SG-25: 0.002. To the best of our knowledge, our
work is the first to quantify convergence rates of commonly used
distributed learning node communication graphs.
for any xxx in the k-dimensional probability simplex. Therefore,
the network with large spectral gap, 1− σ2(PPP), is greatly
desired. Hence, the spectral gap represents how rapidly the
mixing time or the variance between the model at different
nodes decreases. This should be as high as possible for a
given network budget. A spectral gap of 1 indicates all nodes
are inter-connected, providing the fastest convergence but
possibly high network costs. A spectral gap of 0 indicates a
disconnected or partitioned network graph. We now compare
this spectral gap values for commonly used distributed learning
architectures and construct a low-degree, high-spectral gap
node communication graph.

3.2. Stochastic reduce using expander graphs

Figure 3 shows six nodes connected using four distributed
ML training architectures, the all-reduce, the parameter server
(non-distributed), an expander graph with a fixed out-degree of
two, and a chain like architecture and their respective spectral-
gap values for 6 and 25 nodes.

As expected, architectures that contain nodes with more
edges (higher-indegree) have a higher spectral gap. Figure 3(a)
shows the all-reduce, where all machines communicate with
one-another and may incur significant network costs. Fig-
ure 3(b) shows the parameter server has a reasonably high
spectral gap but using a single master with a high fanout
requires considerable network bandwidth and Paxos-style re-
liability for the master. Figure 3(c) shows a root expander
graph has a fixed out-degree of two, and in a network of N
total nodes, each node i sends the intermediate output to its
neighbor (i+1) (to ensure connectivity) and to i+

√
Nth node.

Such root expander graphs ensure that the updates are spread
across the network as N scales since the root increases with
N. Finally, figure 3(d), shows a chain like graph, where the
nodes are connected in a chain-like fashion, the intermediate
parameter updates from node i may spread to i+1 in a single
time step, but will require N time steps to reach to the last
node in the cluster and has low spectral gap values. In the
rest of the paper, we use the root sparse communication graph,
as shown in Figure 3(c), with a fixed out-degree of two, to
evaluate stochastic reduce.
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Figure 4: This figure shows sparse synchronization semantics
where workers W1, W2 and W3 synchronize with one another
and W3, W4 and W5 synchronize with one another. With a
barrier, all workers wait for every other worker and then pro-
ceed to the next iteration.

We find that by using sparse communication reduce graphs,
with just two out-degrees often provides good convergence
and speedup over all-reduce i.e. high enough spectral gap val-
ues with reasonably low communication costs. Using sparse
reduce graphs with stochastic reduce results in faster model
training times because: First, the amount of network time is
reduced. Second, the synchronization time is reduced since
each machine communicates with fewer nodes. Finally, the
CPU costs at each node are reduced since they process fewer
incoming model updates.

For stochastic reduce to be effective, the following proper-
ties are desirable. First, the generated node communication
graph should have a high-spectral gap. This ensures that the
model updates from each machine are diffused across the net-
work rapidly. Second, the node-communication graphs should
have low communication costs. For example, the out-degrees
of each node in the graph should have small out-degrees. Fi-
nally, the graph should be easy to generate such as using a
sequence to accommodate variable number of machines or a
possible re-configuration in case of a failure. These properties
can be used to guide existing data-parallel optimizers [37] to
reduce the data shuffling costs by constructing sparse reduce
graphs to accommodate available network costs and other con-
straints such as avoiding cross-rack reduce. We now discuss
how to reduce the synchronization costs with fine-grained
communication.

4. Fine-grained synchronization

Barrier based synchronization is an important and widely used
operation for synchronizing parallel ML programs across mul-
tiple machines. After executing a barrier operation, a par-
allel worker waits until all the processes in the system have
reached a barrier. Parallel computing libraries like MPI,
as well as data parallel frameworks such as BSP systems and
some parameter servers expose this primitive to the develop-
ers [14, 33, 45, 43]. Furthermore, ML systems based on map-
reduce use the stage barrier between the map and reduce tasks
to synchronize intermediate outputs across machines [16, 30].
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Figure 5: Fine-grained synchronization in ASAP. The solid lines
show NOTIFY operation and the dotted lines show the corre-
sponding ACK . Workers only wait for intermediate outputs from
dependent workers to perform a reduce. After reduce, work-
ers push more data out when they receive an ACK from receivers
signaling that the sent parameter update has been consumed.

Figure 4 shows a parallel training system on n processes.
Each process trains on a subset of data and compute the inter-
mediate model update and issues a send to other machines
and the wait on the barrier primitive. When all processes
arrive at the barrier, the workers perform a reduce operation
over the incoming output and continue processing more input.

However, using the barrier as a synchronization point in
the code suffers from several problems: First, the BSP proto-
col described above, suffers from mixed-version issues i.e. in
the absence of additional synchronization or serialization at
the receive side, a receiver may perform a reduce with partial
or torn model updates (or skip them if a consistency check is
enforced). This is because just using a barrier gives no infor-
mation if the recipient has finished receiving and consuming
the model update. Second, most barrier implementations
synchronize with all other processes in the computation. In
contrast, with stochastic reduce, finer grained synchronization
primitives are required that will block on only the required
subset of workers to avoid unnecessary synchronization costs.
A global barrier operation is slow and removing this opera-
tion can reduce synchronization costs, but makes the workers
process inconsistent data that may slow down the overall time
to achieve the final accuracy. Finally, using a barrier can
cause network resource spikes if all the processes send their
parameters at the same time.

Adding extra barriers before/after push and reduce, does
not produce a strongly consistent BSP that can incorporate
model updates from all replicas since the actual send operation
may be asynchronous and there is no guarantee the receivers
receive these messages when the perform a reduce. Unless
a blocking receive is added after every send, the consistency
is not guaranteed. However, this introduces a significant syn-
chronization overhead.

Hence, to provide efficient coordination among parallel
model replicas, we require the following three properties
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from any synchronization protocol. First, the synchronization
should be fine-grained. Coarse-grained synchronization such
as barrier impose high overheads as discussed above. Sec-
ond, the synchronization mechanism should provide consis-
tent intermediate outputs. Strong consistency methods avoid
torn-reads and mixed version parameter vectors, and improve
performance [13, 67]. Finally, the synchronization should
be efficient. Excessive receive-side synchronization for ev-
ery reduce and send operation can significantly increase
blocking times.

In data-parallel systems with barrier based synchroniza-
tion, there is often no additional explicit synchronization be-
tween the sender and receiver when an update arrives. Fur-
thermore, any additional synchronization may reduce the per-
formance especially when using low latency communication
hardware such as RDMA that allow one-sided writes without
interrupting the receive-side CPU [40]. In the absence of syn-
chronization, a fast sender can overwrite the receive buffers or
the receiver may perform a reduce with a fewer senders in-
stead of consuming each worker’s output hurting convergence.
This is especially problematic with RDMA memory that can
only pin a finite amount of memory on the device.

Naiad, a dataflow based data-parallel system, provides a
notify mechanism to inform the receivers about the incom-
ing model updates [48]. This ensures that when a node per-
forms a local reduce, it consumes the intermediate outputs
from all machines. Hence, a per-receiver notification allows
for finer-grained synchronization. However, simply using a
notify is not enough since a fast sender can overwrite the
receive queue of the receiver and a barrier or any other
style of additional synchronization is required to ensure that
the parallel workers process incoming model parameters at the
same speeds.

To eliminate the barrier overheads for stochastic re-
duce and to provide strong consistency, we propose using
a NOTIFY-ACK based synchronization mechanism that gives
stricter guarantees than using a coarse grained barrier. This
can also improve convergence times in some cases since it fa-
cilitates using consistent data from dependent workers during
the reduce step.

In ASAP, with NOTIFY-ACK, the parallel workers compute
and send their model parameters with notifications to other
workers. They then proceed to wait to receive notifications
from all its senders as defined by their node communication
graphs as shown in figure 5. The wait operation counts the
NOTIFY events and invokes the reduce when a worker has
received notifications from all its senders as described by the
node communication graph. Once all notifications have been
received, it can perform a consistent reduce.

After performing a reduce, the workers sends ACKs, indi-
cating that the intermediate output in previous iteration has
been consumed. Only when a sender receives this ACK for a
previous send, it may proceed to send the data for the next
iteration. Unlike a barrier based synchronization, where

there is no guarantee that a receiver has consumed the interme-
diate outputs from all senders, waiting on ACKs from receivers
ensures that a sender never floods the receive side queue and
avoids any mixed version issues from overlapping intermedi-
ate outputs. Furthermore, fine-grained synchronization allows
efficient implementation of stochastic reduce since each sender
is only blocked by dependent workers and other workers may
run asynchronously.
NOTIFY-ACK requires no additional receive-side synchro-

nization making it ideal for direct-memory access style
protocols such as RDMA or GPU Direct [3]. However,
NOTIFY-ACK requires ordering guarantees of the underlying
implementation to guarantee that a NOTIFY arrives after the
actual data. Furthermore, in a NOTIFY-ACK based implemen-
tation, the framework should ensure that the workers send their
intermediate updates and then wait on their reduce inputs to
avoid any deadlock from a cyclic node communication graphs.

5. Implementation
We develop our second generation distributed ML framework
using the ASAP model and incorporate stochastic reduce
and fine-grained synchronization. We implement distributed
data-parallel model averaging over stochastic gradient descent
(SGD). We implement our reference framework with stochas-
tic reduce and NOTIFY-ACK support in C++ and provide Lua
bindings to run our Lua based deep learning networks [20]. As
compared to our first-generation system [8], we use zero copy
for Lua tensors, use NOTIFY-ACK instead of BSP for sparse
graphs. Furthermore, we use low-degree sparse graph to con-
nect machine nodes rather than fixed-degree fully-connected
graphs.

For distributed communication, we use MPI and create
model parameters in distributed shared memory. In our imple-
mentation, the parallel model replicas create a model vector in
the shared memory and train on a portion of the dataset using
the SGD algorithm. The model replicas process the partitioned
dataset to compute and communicate the gradient and perform
a reduce periodically.

We use the infiniBand transport and each worker directly
writes the intermediate model to its senders without inter-
rupting the receive side CPU, using one-sided RDMA oper-
ations. To reduce synchronization overheads, each machine
maintains a fixed size per-sender receive queue to receive
the model updates from other machines [55]. Hence, after
computing the gradient, parallel replicas write their updates
to this queue using one-sided RDMA writes. Each replicas
performs a reduce of its model and all the models in the
queues following NOTIFY-ACK semantics. Hence, our system
only performs RDMA writes which have half the latency of
RDMA reads. The queues and the shared memory communi-
cation between the model replicas are created based on a node
communication graph provided as an input when launching a
job. After the reduce operation, each machine sends out the
model updates to other machines’ queues as defined by the
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Figure 6: Figure (a) compares the speedup of a root expander graph and an all-reduce graph for 4 workers a single machine SGD.
Each machine in root expander graph transmits 56 MB data while all-reduce transmits 84 MB of data to converge. Figure (b) shows
the convergence of a root expander graph with all-reduce graph for the splice-site dataset over 8 workers. Each machine in root graph
transmits 219 GB of data while all-reduce transmits 2.08 TB/machine to reach the desired accuracy. Figure (c) shows the convergence
of a chain graph, a root expander graph and an all-reduce implementation for the webspam dataset over 25 workers.
communication graph. Our system can perform reduce over
any user-provided node communication graph allowing us to
evaluate stochastic reduce for different node communication
graphs.

Furthermore, we also implement the synchronous, asyn-
chronous and NOTIFY-ACK based synchronization. We imple-
ment synchronous (BSP) training by using the barrier prim-
itive. We use low-level distributed wait and notify primi-
tives to implement NOTIFY-ACK. We maintain ACK counts
at each node and send all outputs before waiting for ACKs
across iterations to avoid deadlocks. We use separate infini-
Band queues for transmitting short messages (ACKs and other
control messages) and large model updates (usually a fixed
size for a specific dataset). For Ethernet based implementa-
tion, separate TCP flows can be used to reduce the latency of
control messages [50].

Fault Tolerance: We provide a straight-forward model for
fault tolerance by simply check-pointing the trained model pe-
riodically to the disk. Additionally, for synchronous methods,
we implement a dataset specific dynamic timeout which is a
function of the time taken for the reduce operation.

6. Evaluation

We evaluate (i) What is the benefit of stochastic reduce? Do
networks with a higher spectral gap exhibit better conver-
gence? and (ii) What is the speedup of using fine-grained
synchronization over a barrier? Is it consistent?

We evaluate the ASAP model for applications that are
commonly used today including text classification, spam
classification, image classification and Genome detection.
Our baseline for evaluation is our BSP/synchronous and
asynchronous based all-reduce implementations which is
provided by many other distributed big data or ML sys-
tems [1, 6, 24, 28, 33, 36, 45, 55]. We use an efficient infini-
Band implementation stack that improves performance for all
methods. However, stochastic reduce and NOTIFY-ACK can
be implemented and evaluated over any existing distributed
learning platform such as GraphLab or TensorFlow.

We run our experiments on eight Intel Xeon 8-core, 2.2

GHz Ivy-Bridge processors and 64 GB DDR3 DRAM. All
connected via a Mellanox Connect-V3 56 Gbps infiniBand
cards. Our network achieves a peak throughput of 40 Gbps
after accounting for the bit-encoding overhead for reliable
transmission. All machines load the input data from a shared
NFS partition. We sometimes run multiple processes on each
machine, especially for models with less than 1M parameters,
where a single model replica is unable to saturate the network
and CPU. All reported times do not account for the initial
one-time cost for the loading the data-sets in memory. All
times are reported in seconds.

We evaluate two ML methods – (a) SVM: We test ASAP on
distributed SVM based on Bottou’s SVM-SGD [10]. Each ma-
chine computes the model parameters and communicates them
to other machines as described in the machine communication
graph. We train SVM over the RCV1 dataset (document clas-
sification), the webspam dataset (webspam detection) and the
splice-site dataset (Genome classification) [4]; and(b) Convo-
lutional Neural Networks (CNNs): We train CNNs for image
classification over the CIFAR-10 dataset [5]. The dataset
consists of 50K train and 10K test images and the goal is to
classify an input image within 10 classes. We use the VGG
network to train 32x32 CIFAR-10 images with 11 layers that
has 7.5M parameters [59]. We use OMP_PARALLEL_THREADS
to parallelize the convolutional operations within a single ma-
chine.

6.1. Approximate processing benefits

Speedup with stochastic reduce We measure the speedups
of all applications under test as the time to reach a specific
accuracy. We first evaluate a small dataset (RCV1, 700MB,
document classification) for the SVM application. The goal
here is to demonstrate that for problems that fit in one ma-
chine, our data-parallel system outperforms a single thread
for each workload [46]. Figure 6(a) shows the convergence
speedup for 4 machines for the RCV1 dataset. We compare the
performance for all-reduce against a root graph with a fixed
out degree of two, where each node sends the model updates
to two nodes – its neighbor and rootNth node. We find that
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the root expander graph converges marginally faster than the
all-reduce primitive, owing to marginally lower network and
CPU costs since the number of machines is small.

Figure 6(b) shows the convergence for the SVM application
using the splice-site dataset on 8 machines with 8 processes.
The splice site training dataset is about 250GB, and does not
fit in-memory in any one of our machines. This is one of
the largest public dataset that cannot be sub-sampled and re-
quires training over the entire dataset to converge correctly [7].
Figure 6(b) compares the two communication graphs – an all-
reduce graph and a root expander graph with an out-degree of
2. We see that the expander graph can converge faster, and re-
quires about 10X lower network bandwidth. Figure 6(c) shows
the convergence for the SVM application on 25 processes us-
ing the webspam dataset that consists of 250K examples. We
compare three node communication graphs – a root expander
graph (with a spectral gap of 0.2 for 25 nodes) and a chain-like
architecture where each machine maintains a model and com-
municates its updates in the form a chain to one other machine,
with the all-reduce implementation. The chain node graph
architecture has lower network costs, but very low spectral
values (≈ 0.008). Hence, it converges slower than the root
expander graph. Both the sparse graphs provide a speedup
over all-reduce since the webspam dataset has a large dense
parameter vector of about 11M float values. However, the
chain graph requires more epochs to train over the dataset
and sends 50433 MB/node to converge while the root node re-
quires 44351 MB/node even though the chain graph transmits
less data per epoch. Hence, one should avoid sparse reduce
graphs with very low spectral gap values and use expander
graphs that provide good convergence for a given network
bandwidth.

To summarize, we find that stochastic reduce provides sig-
nificant speedup in convergence (by 2-10X) and reduces the
network and CPU costs. However, if the node communica-
tion graph is sparse and has low spectral gap values (usually
less than 0.01), the convergence can be slow. Hence, stochas-
tic reduce provides a quantifiable measure using the spectral
gap values to sparsify the node communication graphs. For
models where the network capacity and CPU costs can match
the model costs, using a network that can support the largest
spectral gap is recommended.

6.2. Fine-grained synchronization benefits

We compare the performance of NOTIFY-ACK, synchronous
and asynchronous implementation. We implement the BSP
algorithm using a barrier in the training loop, and all data-
parallel models perform each iteration concurrently. However,
simply using a barrier may not ensure consistency at the re-
ceive queue. For example, the models may invoke a barrier
after sending the models and then perform a reduce. This
does not guarantee that each machine receives all the interme-
diate outputs during reduce. Hence, we perform a consistency
check on the received intermediate outputs and adjust the num-
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Figure 7: This bar graph shows the percentage of consistent
reduce operations with NOTIFY-ACK vs BSP vs ASYNC for
8 machines for the RCV1 dataset. NOTIFY-ACK provides the
strongest consistency allowing 100% of reduce operations to
be performed with other 7 nodes.
ber of intermediate models to compute the model average
correctly. Each parameter update carries a unique version
number in the header and footer we verify the version values
in the header and footer are identical before and after reading
the data from the input buffers.

For asynchronous processing, we perform no synchroniza-
tion between the workers once they finish loading data and
start training. We check the incoming intermediate model up-
dates for consistency as described above. For the NOTIFY-ACK
implementation, we send intermediate models with notifica-
tions and wait for the ACK before performing a reduce.
Often communication libraries over network interconnects
may not guarantee that the notifications arrive with the data,
and we additionally check the incoming model updates and
adjust the number of reducers to compute the model average
correctly. We first perform a micro-benchmark to measure how
consistency of reduce operations in synchronous (SYNC),
asynchronous (ASYNC) and NOTIFY-ACK.

Figure 7 shows, for a graph of 8 nodes with each machine
having an in-degree 7 , the distribution of correct buffers
reduced. NOTIFY-ACK, reduces with all 7 inputs and is valid
100% of the time. BSP has substantial torn reads, and 77% of
the time performs a reduce with 5 or more workers. ASYNC
can only perform 39% of the reduce operations correctly
with 5 or more workers. Hence, we find that NOTIFY-ACK
provides the most consistent data during reduce and fewest
torn buffers followed by BSP using a barrier, followed by
ASYNC.

Figure 8 shows the convergence for the CIFAR-10 dataset
for eight machines in an all-reduce setup. We calculate the
time to reach 99% training accuracy on the VGG network
which corresponds to an approximately 84% test accuracy.
We train our network with a mini-batch size of 1, with no
data augmentation and a network wide learning rate schedule
that decays every epoch. We find that NOTIFY-ACK provides
superior convergence over BSP and ASYNC. Even with a
dense communication graph, we find that NOTIFY-ACK re-
duces barrier times and provides stronger consistency and
faster convergence. Furthermore, we find that ASYNC ini-
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Figure 8: This figure shows the convergence of NOTIFY-ACK,
BSP, ASYNC with eight machines using all-reduce for train-
ing CNNs over the CIFAR-10 dataset with a VGG network.
Speedups are measured over a single machine implementation.
tializes slowly and converges slower than synchronous and
NOTIFY-ACK methods.

We also measure the throughput (examples/second) for
synchronous (BSP), asynchronous and the NOTIFY-ACK syn-
chronous methods. NOTIFY-ACK, avoids coarse-grained syn-
chronization and achieves an average throughput of 229.3
images per second for eight machines. This includes the time
for forward and backward propagation, adjusting the weights
and communicating and averaging the intermediate updates.
With BSP, we achieve 217.8 fps. Finally, we find that even
though ASYNC achieves the highest throughput of 246 fps,
Figure 8 shows that the actual convergence is poor. Hence, to
understand the benefits of approaches like relaxed consistency,
one must consider speedup towards a (good) final accuracy.
However, ASYNC may converge fastest when the datasets
are highly redundant. ASYNC can also provide a speedup if
the model updates are sparse, the reduce operation becomes
commutative and reduces conflicting updates.

Figure 9 shows the convergence for the SVM application
using the webspam dataset on 25 processes. We use the root-
expander graph as described earlier.We find that using fine-
grained NOTIFY-ACK improves the convergence performance
and is about 3X faster than BSP for the webspam dataset. Fur-
thermore, the asynchronous algorithm does not converge to the
correct value even though it operates at a much higher through-
put. NOTIFY-ACK provides good performance for three rea-
sons. First, NOTIFY-ACK provides stronger consistency than
BSP implemented using a barrier. In the absence of addi-
tional expensive synchronization with each sender, the model
replicas may reduce with fewer incoming model updates.
NOTIFY-ACK provides stronger guarantees since each worker
waits for the NOTIFYs before performing the reduce and sends
out additional data with after receiving the ACK messages. Sec-
ond, for approximate processing i.e. when the communication
graph is sparse, a barrier blocks all parallel workers while
when using fine-grained communication with NOTIFY-ACK

independent workers run asynchronously with respect to one
another. To summarize, we find that NOTIFY-ACK eliminates

Figure 9: This figure shows the convergence of NOTIFY-ACK vs
BSP and ASYNC for the root expander graph over the webspam
dataset. The asynchronous implementation does not converge
(DNC) to the final value.
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Figure 10: This figure compares the spectral gap values for ex-
pander graph (degree 2), chain graph (degree 1) and MALT (de-
gree 2). Higher spectral gap values indicate faster convergence.

torn buffers and provides faster convergence over existing
consistency mechanisms for dense as well as sparse node
graphs. We describe our results for the BSP/all-reduce model.
However, these results can also be extended to bi-directional
communication architectures such as the parameter server or
the butterfly architecture.

Comparision of expander graph with other architectures:
Finally, we compare the convergence of expander graphs with
a chain node communication and MALT Halton graphs [42]
in Figure 10. We compute the spectral graphs for degree 2 for
MALT and ASAP as well as for a chain (or ring graph). The
spectral gap represents how fast these node communications
graphs converge as the number of nodes (on x-axis) increases.
We found that ASAP converges faster than MALT for most of
network graphs and chain for every network graph. The ASAP
expander graph of N nodes sends its update to next neighbor
and the root(N) node. The MALT graph follows the Halton
series to send its updates to another two nodes as computed
by this series [2]. In some cases, this may create nodes that
are partitioned into two groups, and spectral gap falls to zero,
resulting in no convergence.
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7. Related Work

Batch systems: The original map-reduce uses a stage bar-
rier i.e. all mapper tasks synchronize intermediate outputs
over a distributed file-system [26]. This provides synchro-
nization and fault tolerance for the intermediate job state but
can hurt performance due to frequent disk I/O. Spark [68]
implements the map-reduce model in-memory using copy-on-
write data-structures (RDDs). RDDs provide fault tolerance
and enforce determinism preventing applications from run-
ning asynchronously. ASIP [32] adds asynchrony support
in Spark by decoupling fault tolerance and coarse-grained
synchronization. However, ASIP finds that asynchronous ex-
ecution may lead to incorrect convergence, and presents the
case for running asynchronous machine learning jobs using
second order methods that provides stronger guarantees but
can be extremely CPU intensive [54]. Finally, there are many
existing general purpose dataflow based systems that use barri-
ers or block on all inputs to arrive [21, 39, 48, 52]. ASAP uses
fine-grained synchronization with partial reduce to mitigate
communication and synchronization overheads. We use ap-
plication level checkpoints for fault tolerance of intermediate
states.

Approximate Processing: Recent work on partial aggre-
gation uses efficient tree-style all-reduce primitive to mitigate
communication costs in batch systems by combining results
at various levels such as machine, rack etc. [12, 66]. However,
the reduce operation suffers from additional latency propor-
tional to the height of the tree. Furthermore, when partial
aggregation is used with iterative-convergent algorithms, the
workers wait for a significant aggregated latency time which
can be undesirable. Other work on partial-aggregation pro-
duces variable accuracy intermediate outputs over different
computational budgets [41, 58]. Other methods to reduce
network costs include using lossy compression [6] or KKT
filters [43] which computes the benefit of updates before send-
ing them over the network. These methods can be applied
with stochastic reduce even though they may incur additional
CPU costs unlike stochastic reduce.

Asynchronous Processing: Past work has explored remov-
ing barriers in Hadoop to start reduce operations as soon as
some of the mappers finish execution [31, 63]. HogWild [56]
uses a single shared parameter vector and allows parallel
threads to update model parameters without locks, thrashing
one another’s updates. However, HogWild may not converge
to a correct final value if the parameter vector is dense and
the updates from different threads overlap frequently. Project
Adam [15], DogWild [51] and other systems that use HogWild
in a distributed setting often cause wasteful communication es-
pecially when used to communicate dense parameter updates.
Several systems propose removing the barriers which may
provide faster throughput but may lead to slower or incorrect
convergence towards the final optimization goal. To overcome
this problem, bounded-staleness [22] provides asynchrony

within bounds for the parameter server i.e. the fast running
threads wait for the stragglers to catch up. However, deter-
mining these bounds empirically can be difficult, and in some
cases they may not be more relaxed than synchronous. ASAP
instead proposes using fine-grained synchrony that reduces
synchronization overhead with strong consistency.

ML frameworks: Parameter Servers [25, 43] provide a
master-worker style communication framework. Here, work-
ers compute the parameter updates and send it to one or more
central servers. The parameter servers compute and update
the global model and sends it to the workers and they continue
to train new data over this updated model. On the contrary,
all-reduce based systems may operate fully asynchronously
since unlike parameter server there is no consensus operation
to exchange the gradients. ASAP reduces communication
overheads in the all-reduce model and by proposing partial-
reduce based on information dispersal properties of underlying
nodes. TensorFlow runs a dataflow graph across a cluster and
uses the asynchronous parameter server to train large mod-
els [6, 13]. For larger models, the large fanout of the master
can be a bottleneck and the model parameters are aggregated
at bandwidth hierarchies [13]. Using ASAP’s stochastic re-
duce to improve the convergence behavior of such network
architectures can reduce the wait times. The parameter server
architecture has also been proposed over GPUs [23, 69] and
the communication and synchronization costs can be reduced
in these systems by using the ASAP model.

8. Conclusion

Practitioners often use approximation and asynchrony to ac-
celerate job processing throughput (i.e. examples/second) in
data parallel frameworks. However, these optimizations may
not achieve a speedup over BSP to reach high accuracy output.

In this paper, we present stochastic reduce that provides
tunable approximation based on available network bandwidth.
We also introduce NOTIFY-ACK that provides fine-grained yet
stronger consistency than BSP. In our results, we demonstrate
that our model can achieve 2-10X speedups in convergence
and up to 10X savings in network costs for distributed ML
applications. Other optimization problems such as graph-
processing face similar trade-offs, and can benefit from using
the ASAP model. A github link of our data-parallel system
including the code to compute spectral gap for different node
topologies will be provided in the final version of our paper.

Finally, there are other sources of synchrony in the system
that can be relaxed. For example, we find that loading data
into memory consumes a significant portion of job times. For
training tasks with significant CPU times, such as processing
images through deep networks, having a separate worker that
loads and sends data to various workers over low latency
networks allows overlapping data loading with model training,
and can remove the initial data load wait times.
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