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Motivation

* Low computation cost of CNNs is a crucial tactor for mobile
applications and cloud services.

» Convolutional layers dominate computation and storage costs in
state-of-art CNNs "],

* Pruning small weights 1?l mostly reduces the storage cost of
parameters from FC layers and require sparse convolutions.
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‘@/\’- Pruning filters and their corresponding feature maps is a
- natural way to reduce the computation and storage cost of
conv layers without introducing sparse kernels.

Contributions

v" Reduce the inference computation cost of CNNs by pruning
filters avoiding the need for sparse convolution libraries.

v Simple criterion for filter selection, without examining each
feature map's importance 34,

v Prune multiple filters together and retrain once, avoiding iterative
pruning and retraining.

Determine Filters’ Importance

» For each conv layer, we measure each filter's relative importance by
its absolute weight sumz Fi il i.e., its él—norm. This value also
represents the average magnitude of its weights.

> Filters with small weights tend to produce feature maps with weak
activations.

> Pruning the smallest tilters works better in comparison with pruning
the same number of random or largest filters.

CIFAR-10, VGG-16
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Filters are ranked by their abs weight sum. (Left) The y-axis is the filter weight

sum divided by the max value among filters in that layer. (Right) Visualization
of filters in the first conv layer of VGG-16 trained on CIFAR-10.
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Determine Single Layer’s Sensitivity to Pruning

CIFAR10, VGG-16, pruned smallest filters CIFAR10, VGG-16, prune smallest filters, retrain 20 epochs
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Pruning the smallest filters of single layer Regain accuracy by retraining

Pruning ratios

« Layers with the same input sizes often have similar sensitivity to pruning. We
use the same pruning ratio for these layers to avoid tuning layer-specitic
meta-parameters.

* For layers that are sensitive to pruning, we use a small pruning rate or
completely skip pruning them.

Prune Filters across Multiple Layers
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Pruning filters across consecutive layers
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X Independent pruning determines filters to be pruned at one layer
independent of other layers.

v Greedy pruning does not count kernels connected with the previously
oruned feature maps during filter selection.
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residual block

Pruning residual blocks with projection shortcut

P(x;)

* The first layer ot the residual block can be pruned without restrictions.

* The filters to be pruned in the second conv layer of the residual blocks is
determined by the pruning result of the shortcut projection.

Retrain Pruned Networks

Instead of iterative pruning and retraining, we adopt a one-shot pruning and
retraining strategy (~% of the original training time).
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Pruning Filters for Efficient ConvNets
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Experiments

ILSVRC12

Overall results

VGG-16 6.75 3.13 x 108 1.5x 10/
VGG-16-pruned-A 6.60 206x10% 34.2% 5.4 x 100 64%
VGG-16-pruned-A scratch train 6.88

ResNet-56 6.96 1.25x 108 8.5x 10°
ResNet-56-pruned-A 6.90 1.12x 108 10.4% 7.7 x 10° 9.4%
ResNet-56-pruned-B 694  9.09x10" 27.6% 7.3 x10° 13.7%
ResNet-56-pruned-B scratch train ~ 8.69

ResNet-110 6.47 2.53 x 108 1.72 x 100
ResNet-110-pruned-A 645 213x10% 15.9% 1.68 x 100 2.3%
ResNet-110-pruned-B 6.70 1.55x 108 38.6% 1.16 x 100 32.4%
ResNet-110-pruned-B scratch train  7.06

ResNet-34 2677  3.64 x 107 2.16 x 10/
ResNet-34-pruned-A 27.44  3.08x 107 15.5% 1.99 x 10/ 7.6%
ResNet-34-pruned-B 27.83  276x10°  24.2% 1.93 x 10/ 10.8%
ResNet-34-pruned-C 27.52 337 x107  7.5% 2.01 x 10/ 7.2%

¢ ~30% reduction in FLOPs tor VGG-16 (on CIFAR-10) and ResNets without

significant loss in accuracy.

* Training a pruned model from scratch performs worse than retraining a

oruned model.

* Pruning the first layer of the residual block is more eftective.

Sensitivity analysis

* For ResNets, layers that are sensitive to pruning are close to the residual

blocks where the number of feature maps changes.

CIFAR10, ResNet-56, prune smallest filters

CIFAR10, ResNet-110, prune smallest filters
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CIFAR10, ResNet-56, prune smallest filters
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CIFAR10, ResNet-110, prune sma
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ResNet 56
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ResNet 110
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ImageNet, ResNet-34, prune smallest filters
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/,ImageNet, ResNet-34, prune the second layer of the basicblock
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