
Ø For each conv layer, we measure each filter’s relative importance by 
its absolute weight sum , i.e., its -norm. This value also
represents the average magnitude of its weights.

Ø Filters with small weights tend to produce feature maps with weak 
activations.

Ø Pruning the smallest filters works better in comparison with pruning 
the same number of random or largest filters.
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Motivation

• Low computation cost of CNNs is a crucial factor for mobile 
applications and cloud services.

• Convolutional layers dominate computation and storage costs in
state-of-art CNNs [1].

• Pruning small weights [2] mostly reduces the storage cost of 
parameters from FC layers and require sparse convolutions.

Determine Filters’ Importance

Filters are ranked by their abs weight sum. (Left) The y-axis is the filter weight 
sum divided by the max value among filters in that layer. (Right) Visualization 
of filters in the first conv layer of VGG-16 trained on CIFAR-10.

Pruning the smallest filters of single layer Regain accuracy by retraining

Prune Filters across Multiple Layers

Experiments
Model Error FLOP Pruned Parameters Pruned
VGG-16 6.75 3.13 x 108 1.5 x 107

VGG-16-pruned-A 6.60 2.06 x 108 34.2% 5.4 x 106 64%

VGG-16-pruned-A scratch train 6.88

ResNet-56 6.96 1.25 x 108 8.5 x 105

ResNet-56-pruned-A 6.90 1.12 x 108 10.4% 7.7 x 105 9.4%

ResNet-56-pruned-B 6.94 9.09 x 107 27.6% 7.3 x 105 13.7%

ResNet-56-pruned-B scratch train 8.69

ResNet-110 6.47 2.53 x 108 1.72 x 106

ResNet-110-pruned-A 6.45 2.13 x 108 15.9% 1.68 x 106 2.3%

ResNet-110-pruned-B 6.70 1.55 x 108 38.6% 1.16 x 106 32.4%

ResNet-110-pruned-B scratch train 7.06

ResNet-34 26.77 3.64 x 109 2.16 x 107

ResNet-34-pruned-A 27.44 3.08 x 109 15.5% 1.99 x 107 7.6%

ResNet-34-pruned-B 27.83 2.76 x 109 24.2% 1.93 x 107 10.8%

ResNet-34-pruned-C 27.52 3.37 x 109 7.5% 2.01 x 107 7.2%

Pruning filters across consecutive layers
✗ Independent pruning determines filters to be pruned at one layer 

independent of other layers.

ü Greedy pruning does not count kernels connected with the previously
pruned feature maps during filter selection.

Pruning residual blocks with projection shortcut
• The first layer of the residual block can be pruned without restrictions.

• The filters to be pruned in the second conv layer of the residual blocks is 
determined by the pruning result of the shortcut projection. 

Retrain Pruned Networks
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Determine Single Layer’s Sensitivity to Pruning

Overall results
• ~30% reduction in FLOPs for VGG-16 (on CIFAR-10) and ResNets without 

significant loss in accuracy.

• Training a pruned model from scratch performs worse than retraining a 
pruned model.

• Pruning the first layer of the residual block is more effective.
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Pruning ratios
• Layers with the same input sizes often have similar sensitivity to pruning. We 

use the same pruning ratio for these layers to avoid tuning layer-specific
meta-parameters. 

• For layers that are sensitive to pruning, we use a small pruning rate or 
completely skip pruning them.
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Instead of iterative pruning and retraining, we adopt a one-shot pruning and 
retraining strategy (~¼ of the original training time).

Contributions
ü Reduce the inference computation cost of CNNs by pruning

filters avoiding the need for sparse convolution libraries.

ü Simple criterion for filter selection, without examining each
feature map’s importance [3,4].

ü Prune multiple filters together and retrain once, avoiding iterative
pruning and retraining.

Pruning filters and their corresponding feature maps is a 
natural way to reduce the computation and storage cost of 
conv layers without introducing sparse kernels.

Sensitivity analysis
• For ResNets, layers that are sensitive to pruning are close to the residual 

blocks where the number of feature maps changes.

ResNet 56 ResNet 110 ResNet 34
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