MALT: Distributed Data-Parallelism for Existing ML Applications
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ML transforms data into insights Properties of ML applications
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* Fine-Grained and Incremental: ML tasks perform repeated model
updates over new input data.

Large amounts of data is being generated by

user-software interactions, social networks, and « Asynchronous: ML tasks may communicate asynchronously. E.Q.
hardware devices. communicating model information, back-propagation etc.

Timely insights depend on providing accurate and * Approximate: ML applications are stochastic and often an
updated machine learning (ML) models using this approximation of the trained model is sufficient.

data.

* Need Rich Developer Environment: Developing ML applications
requires a rich set of libraries, tools and graphing abilities which is often

Large learning models, trained on large datasets missing in many highly scalable systems.

often improve model accuracy [1].

Our Solution: MALT Network-efficient learning Results

In a peer-to-peer learning, instead of sending model info. We integrate MALT with three applications:

Goal: Provid Hicient lib f to all replicas, MALT sends model updates to log(N) SVMI[3], matrix factorization[4] and neural
Oodl. rFrovide an efricient liorary 10r . . :
o _ _ nodes, such that (i) the graph of all nodes is connected network[5]. MALT requires reasonable developer
providing data-parallelism to existing (i) the model updates are disseminated uniformly across| | efforts and provides speedup over existing
ML applications. all nodes. methods.
SGD using SGD using I SGD using ) S
V1 as primary V2 as primary Vn as primary Classification (RCV1) SVM 47K 480 MB
model param model param model param
Image classification
(PASCAL - alpha) S 220 J G
[V1 (V2] (vn
DNA detection (DNA) SVM 800 10 GB
Genome detection
(splice-site) SVM 11M 250 GB
vector object library model 2 .
_ Webspam detection SVM 16.6M 10 GB
(webspam)
dstorm (distributed one-sided remote memory) model 3 Collaborative filtering Matrix (4N 6
Traditional: all-reduce exchange of model (netflix) Factorization
HDFS/NFS (for loading training data) information. As number of nodes (N) increase, the ‘zﬂggegg’:g‘ Neural networks ~ 12.8M 3.1 GB
total number of updates transmitted in the network
|ncreases as O(N/\2) ~ Splice-site, modelavg, cb=5000, ranks=8 X100 Webspam, BSP, gradavg, cb=5000 L
oo goaloot2ds - e | W |
MALT performs peer-to-peer machine ;:;::31 ] | TiSmNCaex L Sop—teemeesner R
model6 = “—+H o221 Boag o

learning. It provides abstractions for fine-
grained In-memory updates using one-
sided RDMA, Ilimiting data movement
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converges faster than MALT-all. Halton reduces network communication costs

the dataflow and apply communication
and representation optimizations.

and provides fast convergence.
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