
vector object library

dstorm (distributed one-sided remote memory)

HDFS/NFS (for loading training data)

SGD using
V1 as primary
model param

V1 V2 Vn

SGD using
V2 as primary
model param

SGD using
Vn as primary
model param

V1 V2 Vn V1 V2 Vn

Replica 1 Replica 2 Replica n

MALT: Distributed Data-Parallelism for Existing ML Applications
Hao Li, Asim Kadav, Erik Kruus, Cristian Ungureanu

asim@nec-‐labs.com

Large amounts of data is being generated by
user-software interactions, social networks, and
hardware devices.

Timely insights depend on providing accurate and
updated machine learning (ML) models using this
data.

Large learning models, trained on large datasets
often improve model accuracy [1].

Our Solution: MALT
Goal: Provide an efficient library for
providing data-parallelism to existing

ML applications.

Network-efficient learning
In a peer-to-peer learning, instead of sending model info.
to all replicas, MALT sends model updates to log(N)
nodes, such that (i) the graph of all nodes is connected
(ii) the model updates are disseminated uniformly across
all nodes.

Results
We integrate MALT with three applications:
SVM[3], matrix factorization[4] and neural
network[5]. MALT requires reasonable developer
efforts and provides speedup over existing
methods.

We demonstrate that MALT outperforms single
machine performance for small workloads and can
efficiently train models over large datasets that span
multiple machines (See our paper in EuroSys 2015
for more results).

References and Related Work

[1] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness
of data. Intelligent Systems, IEEE, 24(2):8–12, 2009.
[2] J. Dean et. al., Large scale distributed deep networks, NIPS 2012.
[3] L. Bottou. Large scale machine learning with SGD. COMPSTAT 2010.
[4] B. Recht et. al., HogWild: A lock free approach to parallelizing
stochastic descent, NIPS 2011.
[5] B. Bai e.t. al. SSI: Supervised Semantic Indexing. ACM CIKM 2009.

ML transforms data into insights
Machine learning tasks have all of the following properties:

• Fine-Grained and Incremental: ML tasks perform repeated model
updates over new input data.

• Asynchronous: ML tasks may communicate asynchronously. E.g.
communicating model information, back-propagation etc.

• Approximate: ML applications are stochastic and often an
approximation of the trained model is sufficient.

• Need Rich Developer Environment: Developing ML applications
requires a rich set of libraries, tools and graphing abilities which is often
missing in many highly scalable systems.

Properties of ML applications

Design
requirements MALT’s solution

Efficient model
communication

MALT provides a scatter-gather
API. scatter allows sending of model
updates to the peer replicas. Local
gather function applies any user-
defined function on the received values.

Asynchronous

Models train and scatter updates to
per-sender receive queues. This
mechanism when used with one-sided
RDMA writes, ensure no interruption to
the receiver CPU.

Approximate
MALT allows different consistency
models to trade-off consistency and
training time.

Re-use
developer

environment

Works with existing applications.
Currently integrated with SVM-SGD,
HogWild-MF and NEC RAPID.

MALT performs peer-to-peer machine
learning. It provides abstractions for fine-
grained in-memory updates using one-
sided RDMA, limiting data movement
costs when training models. MALT allows
machine learning developers to specify
the dataflow and apply communication
and representation optimizations.

Traditional: all-reduce exchange of model
information. As number of nodes (N) increase, the
total number of updates transmitted in the network

increases as O(N^2).

MALT model propagation: Each machine sends
updates to log(N) nodes (to N/2 + i and N/4 + i for node
i). As N increases, the outbound nodes follows Halton
sequence (N/2, N/4, 3N/4, N/8, 3N/8..).and the total
number of updates transmitted increases as O(N logN).

Serial SGD
1: procedure SERIALSGD
2: Gradient g;
3: Parameter W;
4:
5: for epoch = 1 : maxEpochs do
6:
7: for i = 1 : maxData do
8: g = cal gradient(data[i]);
9: W = W + g;
10:
11: return W

1: procedure PARALLELSGD
2: maltGradient g(SPARSE, ALL);
3: Parameter W;
4:
5: for epoch = 1 : maxEpochs do
6:
7: for i = 1 : maxData/totalMachines do
8: g = cal gradient(data[i]);
9: g.scatter(ALL);
10: g.gather(AVG);
11: W = W + g;
12:
13: return W

Data-Parallel SGD with MALT

Transforming
serial SGD (Stochastic
Gradient Descent) to
data-parallel SGD.

Application (Dataset) Model # Parameters Dataset size
(uncompressed)

Document
Classification (RCV1) SVM 47K 480 MB

Image classification
(PASCAL - alpha) SVM 500 1 GB

DNA detection (DNA) SVM 800 10 GB

Genome detection
(splice-site) SVM 11M 250 GB

Webspam detection
(webspam) SVM 16.6M 10 GB

Collaborative filtering
(netflix)

Matrix
Factorization 14.9M 1.6 GB

Ad prediction
(KDD 2012) Neural networks 12.8M 3.1 GB

SVM Convergence (loss vs time in seconds) for
SVM using splice dataset for MALT-all and
MALT-Halton. We find that MALT-Halton
converges faster than MALT-all.

Network costs for MALT-all, MALT-Halton and
the parameter server for the whole network for
the webspam workload. We find that MALT-
Halton reduces network communication costs
and provides fast convergence.

Neural networks AUC (area under curve) vs
time (in seconds) for a three layer neural network
for text learning (click prediction) using KDD
2012 data.

50

400

0

50

100

150

200

250

300

350

Runtime configurations

T
im

e
to

p
ro

ce
ss

 5
0

 e
p
oc

hs fault-free
1-node failure

Fault tolerance: Time taken to converge for
the DNA dataset with fault-free and a single
rank failure case. MALT is able to recover
from the failure and train the model correctly.

Data

Data

Data

Data

Data

Data

model 1

model 2

model 3

model 4

model 5

model 6

Data

Data

Data

Data

Data

Data

model 1

model 2 model 4

model 6

model 5

model 3

 0 1 2 3 4

200

0

40

80

120

160

T
im

e
to

 r
un

 1
0

0
 e

p
oc

hs
 f

or
 w

eb
sp

am

Halton-grad-avg PS-model-avg PS-grad-avgHalton-model avg

loss=0.05

loss=0.03

loss=0.05

loss=0.03

Wait

Compute

Figure 9. This figure compares MALTHalton with parameter
server (PS) for distributed SVM for webspam workload for
asynchronous training, with achieved loss values for 20 ranks.

0 50 100 150 200 250

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

time (1 sec)

Splice−site, all, modelavg, cb=5000, ranks=8

lo
ss

goal 0.01245
BSP
ASYNC 6X
SSP 7.2X

Figure 10. This figure shows the convergence for bulk-
synchronous (BSP), asynchronous processing (ASP) and
bounded staleness processing (SSP) for splice-site workload.

100 101 102

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

time (0.01 sec)

RCV1, all, BSP, gradavg, ranks=10

lo
ss

goal 0.145
single rank SGD
cb=1000 5.2X
cb=5000 6.7X
cb=10000 5.5X

100 101 102

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

time (0.01 sec)

RCV1, Halton, BSP, gradavg, ranks=10

lo
ss

goal 0.145
single rank SGD
cb=1000 5.9X
cb=5000 8.1X
cb=10000 5.7X

Figure 11. This figure shows convergence (loss vs time in
seconds) for RCV1 dataset for MALTall (left) and MALTHalton
(right) for different communication batch sizes. We find that
MALTHalton converges faster than MALTall.

0 50 100 150 200 250

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

time (1 sec)

Splice−site, modelavg, cb=5000, ranks=8

lo
ss

goal 0.01245
BSP all
ASYNC all 6X
ASYNC Halton 11X

Figure 12. This figure shows convergence (loss vs time in
seconds) for splice-site dataset for MALTall and MALTHalton.
We find that MALTHalton converges faster than MALTall.

machines. Second, each node performs model averaging
of fewer (log(N)) incoming models. Hence, even though
MALTHalton may require more iterations than MALTall, the
overall time required for every iteration is less, and over-
all convergence time to reach the desired accuracy is less.
Finally, since MALTHalton spreads out its updates across all
nodes, that aids faster convergence.

Figure 12 shows the model convergence for the splice-
site dataset and speedup over BSP-all in reaching the desired
goal with 8 nodes. From the figure, we see that MALTHalton
converges faster than MALTall. Furthermore, we find that
that until the model converges to the desired goal, each node
in MALTall sends out 370 GB of updates for every machine,
while MALTHalton only sends 34 GB of data for every ma-
chine. As the number of nodes increase, the logarithmic fan-
out of MALTHalton should result in lower amounts of data
transferred and faster convergence.

MALT Halton trades-off freshness of updates at peer repli-
cas with savings in network communication time. For work-
loads where the model is dense and network communication
costs are small compared to the update costs, MALTall con-
figuration may provide similar or better results over MALT
Halton. For example, for the SSI workload, which is a fully
connected neural network, we only see a 1.1⇥ speedup for
MALTHalton over MALTall. However, as the number of nodes
and model sizes increase, the cost of communication begins
to dominate, and using MALTHalton is beneficial.

Figure 13 shows the data sent by MALTall, MALTHalton,
and the parameter server over the entire network, for the
webspam workload. We find that MALTHalton is the most net-
work efficient. Webspam is a high-dimensional workload.
MALTHalton only sends updates to log(N) nodes. The pa-
rameter server sends gradients but needs to receive the whole
model from the central server. We note that other optimiza-
tions such as compression, and other filters can further re-
duce the network costs as noted in [36]. Furthermore, when
the parameter server is replicated for high-availability, there
is more network traffic for additional N (asynchronous)
messages for N � way chain replication of the parameters.

2 4 10 20
0

2

4

6

8

10

12

14
x 104

ranks

to
ta

l n
et

w
or

k
tra

ffi
c

(M
Bs

)

Webspam, BSP, gradavg, cb=5000

all
Halton
parameter server

Figure 13. This figure shows the data sent by MALTall,
MALTHalton and the parameter server for the webspam work-
load. MALT sends and receives gradients while parameter
server sends gradients but needs to receive whole models.

To summarize, we find that MALT provides sending gra-
dients (instead of sending the model) that saves network
costs. Furthermore, MALT Halton is network efficient and
achieves speedup over MALT all.

Network saturation tests: We perform infiniBand network
throughput tests, and measure the time to scatter updates
in MALTall case with the SVM workload. In the synchronous
case, we find that all ranks operate in a log step fashion,
and during the scatter phase, all machines send models at
the line rate (about 5 GB/s). Specifically, for the webspam
workload, we see about 5.1 GB/s (about 40 Gb/s) during
scatter. In the asynchronous case, to saturate the network,
we run multiple replicas on every machine. When running
three ranks on every machine, we find that each machine
sends model updates at 4.2 GB/s (about 33 Gb/s) for the
webspam dataset. These tests demonstrate that using a large
bandwidth network is beneficial for training models with
large number of parameters. Furthermore, using network-
efficient techniques such as MALTHalton can improve perfor-
mance.

6.3 Developer Effort
We evaluate the ease of implementing parallel learning in
MALT by adding support to the four applications listed in
Table 3. For each application we show the amount of code
we modified as well as the number of new lines added.
In Section 4, we described the specific changes required.
The new code adds support for creating MALT objects, to
scatter-gather the model updates. In comparison, im-
plementing a whole new algorithm takes hundreds of lines
new code assuming underlying data parsing and arithmetic
libraries are provided by the processing framework. On av-
erage, we moved 87 lines of code and added 106 lines, rep-
resenting about 15% of overall code.

6.4 Fault Tolerance
We evaluate the time required for convergence when a node
fails. When the MALT fault monitor in a specific node re-

Application Dataset
MALT annotations

LOC
Modified

LOC Added

SVM RCV1 105 107
Matrix
Factorization Netflix 76 82

SSI KDD2012 82 130

Table 3. Developer effort for converting serial applications to
data-parallel with MALT.

50

400

0

50

100

150

200

250

300

350

Runtime configurations

T
im

e
to

p
ro

ce
ss

 5
0

 e
p
oc

hs fault-free
1-node failure

Figure 14. This figure shows the time taken to converge for
DNA dataset with 10 nodes in fault-free and a single process
failure case. We find that MALT is able to recover from the
failure and train the model with desired accuracy.
ceives a time-out from a failed node, it removes that node
from send/receive lists. We run MALT-SVM over ten ranks
on eight nodes to train over the PASCAL-DNA [6] dataset.
We inject faults on MALT jobs on one of the machines and
observe recovery and subsequent convergence. We inject the
faults through an external script and also inject programmer
errors such as divide by zero.

We find that in each case, MALT fault monitors detected
the unreachable failed mode, triggered a recovery process
to synchronize with the remaining nodes and continued to
train. We also observe that subsequent group operations only
execute on the surviving nodes. Finally, we verify that the
models converge to an acceptable accuracy in each of the
failed cases. We also find that local fault monitors were able
to trap processor exceptions and terminate the local training
replica. We note that MALT cannot detect corruption of
scalar values or Byzantine failures. Figure 14 shows one
instance of failure recovery, and the time to converge is
proportional to the number of remaining nodes in the cluster.

7. Related work
Our work draws inspiration from past work on data-parallel
processing, ML specific platforms, ML optimizations and
RDMA based key-value stores.

Existing data-parallel frameworks: Batch processing sys-
tems based on map-reduce [24, 51] perform poorly for ma-

100 101 102

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

iterations (10000)

RCV1, all, BSP, gradavg, ranks=10

lo
ss

goal 0.145
single rank SGD
cb=5000 7.3X

100 101 102

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

time (0.01 sec)

RCV1, all, BSP, gradavg, ranks=10

lo
ss

goal 0.145
single rank SGD
cb=5000 6.7X

Figure 4. This figure shows convergence for RCV1 workload
for MALTall with a single machine workload. We find that
MALTall converges quicker to achieve the desired accuracy.

50

300

0

50

100

150

200

250

Runtime configurations

Sp
ee

d
up

 o
ve

r
si

ng
le

 S
G

D
 f

or

fi
x

lo
ss

MR-SVM

MALT-SVM

alpha, all, BSP, modelavg, ranks=10

Figure 5. This figure shows speedup by iterations with PAS-
CAL alpha workload for MALTall SVM with MR-SVM. MR-
SVM algorithm is implemented using the MALT library over
infiniBand. We achieve super-linear speedup for some work-
loads because of the averaging effect from parallel replicas [52].
benefit of different synchronization methods. We compare
speedup of the systems under test by running them until
they reach the same loss value and compare the total time
and number of iterations (passes) over data per machine.
Distributed training requires fewer iterations per machine
since examples are processed in parallel. For each of our
experiments, we pick the desired final optimization goal as
achieved by running a single-rank SGD [6, 12]. Figure 4
compares the speedup of MALTall with a single machine for
the RCV1 dataset [12], for a communication batch size or cb
size of 5000. By cb size of 5000, we mean that every model
processes 5000 examples from the dataset and then propa-
gates the model updates to all other machines. We find that
MALTall provides a speedup with good convergence. By 10
ranks, we mean 10 processes, that span our eight machine
cluster. For RCV1 and other smaller workloads, we find that
we are unable to saturate the network and CPU with a single
replica, and run multiple replicas on a single machine.

We now compare MALT-SVM performance with an ex-
isting algorithm designed for map-reduce (MR-SVM). MR-

500 1000 1500 2000 2500 3000
0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

time (1 sec)

KDD2012, all, BSP, modelavg, ranks=8

AU
C

desired goal 0.7
single rank SGD
cb=15000 1.13X
cb=20000 1.5X
cb=25000 1.24X

Figure 6. This figure shows the AUC (Area Under Curve)
vs time (in seconds) for a three layer neural network for text
learning (click prediction).

SVM algorithm is based on common Hadoop implemen-
tations and communicates gradients after every partition-
epoch [56]. We implement MR-SVM algorithms over the
MALT library and run it over our infiniBand cluster. MR-
SVM uses one-shot averaging at the end of every epoch to
communicate parameters (cb size = 25K). MALT is designed
for low-latency communication and communicated parame-
ters more often (cb size = 1K). Figure 5 shows speedup by it-
erations for the PASCAL alpha workload for MR-SVM (im-
plemented over MALT) and MALTall. We find that both the
workloads achieve super-linear speedup over a single ma-
chine SGD on the PASCAL alpha dataset. This happens be-
cause the averaging effect of gradients provides super-linear
speedup for certain datasets [52]. In addition, we find that
MALT provides 3⇥ speedup (by iterations, about 1.5⇥ by
time) over MR-SVM. MALT converges faster since it is de-
signed over low latency communication, and sends gradients
more frequently. This result shows that existing algorithms
designed for map-reduce may not provide the most optimal
speedup for low latency frameworks such as MALT.

Figure 6 shows the speedup with time for convergence
for ad-click prediction implemented using a fully connected,
three layer neural network. This three layer network needs
to synchronize parameters at each layer. Furthermore, these
networks have dense parameters and there is computa-
tion in the forward and the reverse direction. Hence, fully-
connected neural networks are harder to scale than convolu-
tion networks [23]. We show the speedup by using MALT
all to train over KDD-2012 data on 8 processes over single
machine. We obtain up to 1.5⇥ speedup with 8 ranks. The
speedup is limited as compared to SVM because 1) SSI is
non-convex and requires high-dimensional model commu-
nication as opposed to gradient and 2) text processing in a
neural network requires limited computation and communi-
cation costs dominate.

Figure 7 shows speedup by iterations over single ma-
chine SGD with matrix factorization. We show convergence
for two different learning rate strategies – byiter, where we
start with a learning rate and decrease every certain num-

