
RWDDA: Distributed Dual Averaging Made Practical

Cun Mu∗∗, Asim Kadav†, Erik Kruus†, Donald Goldfarb∗, Martin Renqiang Min†
NEC Laboratories America†

Columbia University∗

Abstract

The increased data collection and processing abilities of embedded devices allows
learning across these devices for novel applications such as traffic management,
power generation etc. However, real world distributed machine learning across
multiple devices suffers from intermittent device and link failures, and data bias
skews that make existing distributed optimization methods less useful.
We propose a failure resilient distributed learning framework called RWDDA,
that provides provable convergence in the presence of failures and non-i.i.d. data.
RWDDA improves upon the existing distributed dual averaging (DDA) method,
making it robust to changes in network topology and amenable to asynchronous
implementations. RWDDA also uses several implementation optimizations that
provide our dual-order methods about 200X speedup making them as fast as pri-
mal methods. Our theoretical analysis shows the algorithm has O(1/

√
t) conver-

gence for non-smooth convex problems. We apply our techniques to distributed
SVM and find that our system outperforms competing methods, especially in the
presence of communication link failures.

1 Introduction

Machine learning algorithms are commonly being applied across sensors, mobile and personal de-
vices and even geographically distributed data centers. These devices generate and share the data and
the computational costs of training a model. However, distributed learning in real world scenarios
suffers from two issues. First, the various nodes in a real-world setting may suffer from intermit-
tent network or node failures. For example, geographically separated data centers may suffer from
communication delays or dropped packets. Second, the nodes in the distributed system such as the
physical sensors may collect data points that are not randomly distributed across the nodes resulting
in non-independent and identically distributed (non-i.i.d.) data across the nodes. Data-centers too,
often collect non-random data, with each data center receiving data that is biased towards the ge-
ography where it is located. Often due to scale, privacy, or lack of a central coordinating resource,
randomizing data may not always be possible. As a result, distributed training across these nodes in
the presence of biased data at individual machines, based on simple techniques such as averaging of
parameters may not work.

The most commonly applied paradigm for distributed machine learning is the parameter server ap-
proach [9, 10, 20]. The parameter server approach has reasonable computational costs and resets
the parameters for all workers ensuring consensus based convergence. However, for many practical
embedded sensors there may not be a central reliable server. Furthermore, if the server fails, the
recovery requires using complex protocols [17]. Hence, an alternative approach is to perform dis-
tributed consensus optimization methods by using all-reduce style methods [18]. This approach is
commonly used with MPI, Hadoop and other map-reduce style frameworks [1]. This model has no
separate master and avoids any centralized bottlenecks [8]. Furthermore, a failed node may simply

∗Work done as a NEC Labs intern. Now at Columbia University.

NEC Labs Technical Report, May 2016.

be removed from the training process. An all-reduce approach is preferred when data is generated
at separate physical sources (such as geographically distributed data-centers or sensors).

The all-reduce approach does not require maintaining a set of reliable master servers using complex
fault tolerance protocols such as Paxos that are required for master-slave systems. Furthermore,
the all-reduce approach only requires communicating gradients for convex problems and reduces
high-dimensional model communication costs.

A disadvantage of the all-reduce technique is that it requires communicating with all peers. Hence,
for N machines, this results in O(N2) communication complexity. Because of these prohibitive
communication costs, these systems may communicate infrequently that results in poor conver-
gence [41]. To address these issues, second order techniques such as dual-averaging have been
proposed that perform sparse communication but still guarantee convergence [13, 14, 33]. However,
these methods are not resilient to failures, and cannot handle dynamic change in network topolo-
gies. Furthermore, the dual-order methods are expensive to use, and simple averaging is preferred
to aggregate the model updates.

To address above problems, we build a system called RWDDA, that makes distributed dual av-
eraging practical. RWDDA is capable of handling dynamic communication networks, since each
node in RWDDA only needs to know about their neighborhood in the network based on received
model updates, rather than global properties of the entire network. As a result, RWDDA can han-
dle real-world intermittent failure scenarios. RWDDA also provides several practical performance
optimizations that make it 200X faster than existing dual methods. To the best of our knowledge,
our work is the first such implementation to show that a dual method can work as fast as a primal
method. Furthermore, these optimizations can also be applied to other dual-order methods that are
considered impractical due to their slow speeds.

2 Background

2.1 Problem Statement

In mathematical terms, the optimization problem is defined on a connected undirected network and
solved by n agents (computers) collectively,

min
x∈X⊆Rd

f̄(x) :=

n∑
i=1

fi(x). (2.1)

The feasible set X is a closed and convex set in Rd and is commonly known by all agents, whereas
fi : X ∈ R is a convex function privately known by the agent i. Throughout the paper, we also
assume that fi is L-Lipschitz continuous over X with respect to the Euclidean norm ‖·‖. The
network G = (N , E), with the node set N = [n] := {1, 2, · · · , n} and the edge set E ⊆ N × N ,
specifies the topological structure on how the information can be spread among agents through local
agent interactions over time. In specific, each agent i can only send and retrieve information from
its neighbors N (i) := {j | (j, i) ∈ E} and itself.

2.2 Related Work

In this paper, we propose to solve this problem in the framework of Decentralized Consensus Opti-
mization (DCO), where all the nodes (agents), with their own utility functions, are connected through
a network. The networked system goal is to optimize the sum of all the utility functions, only through
local computations and local information exchange with neighbors as specified by the communica-
tion graph of all nodes. Such peer-to-peer framework, with applications ranging from large scale
machine learning [33, 22, 21, 39] to wireless sensor networks [25, 12], tends to be scalable, simple
to implement and robust to intermittent network failures.

Given the importance of DCO, many methods have been proposed recently [23]. One of the tech-
niques that gained recent popularity is a class of distributed algorithms that combine the consen-
sus protocols developed from the control field [28] and the gradient-type methods from the opti-
mization area [27]. Here, a consensus protocol refers to a mechanism for information diffusion,
where each agent independently spread their information via locally weighted averaging of their
incoming data. The gradient-based methods are particularly suitable, since they, in general, have a

2

small per-iteration cost and are robust to various sources of stochastic errors. In contrast with ap-
proaches based on bi-directional communication, e.g. Randomized Gossiping [7] and ADMM-type
distributed methods [36], the above mentioned technique employs only one-directional communica-
tion, (where agents only send information and then proceed with their local computations without
expecting a response from others,) and thus manage to avoid the deadlock problem resulting from
the bi-direction communication in practical implementation.

Generally speaking, based on the style of the consensus step, these methods can be classified as
model averaging methods [25, 29, 30, 38, 15, 19, 32], which average parameters, and dual averag-
ing methods [3, 33, 35], which average (sub)gradients. Arguably, the dual averaging approach is
preferable as it is more scalable with the size of the network than the primal one [3]. However, the
dual method may suffer from significant performance overheads. In specific, the dual computation
and distributed consensus lead to high CPU costs when computing the dual variable every iteration,
which makes it impractical when applied to large datasets as compared to primal model averaging
methods.

Moreover, the successes of the above mentioned model averaging methods and dual averaging meth-
ods heavily rely on the communication network to be static, which may not be realistic due to
node/edge failures. One exception is these methods [34, 33, 24, 40] using the push-sum protocol,
aka weighted gossip or sum-weight algorithms [16, 4, 14]. In theory, push-sum type methods are
robust to the change in network topology under the synchronous scenario. However, as pointed in
[33], due to the scaling issue, these methods are often numerical instable in practical asynchronous
implementation. Our numerical experiment in Section 4 also conforms to this observation.

3 RWDDA for resilient consensus optimization

3.1 RWDDA system design

In this section, we describe RWDDA design. RWDDA is designed to support multiple replicas
across different nodes training on different data. After training an example (or a batch of examples),
these nodes send model information to one-another and learn using RWDDA’s dual averaging al-
gorithm. Hence, with RWDDA each machine computes a new model based on the data examples,
and performs a push operation to its peers as decided by the network topology. It them performs a
reduce operation over the received model updates and proceeds to train over more data.

In RWDDA, each machine maintains a per-sender queue to receive the model information that can
be written to by the peers using shared memory protocols. This design of using dedicated per-sender
queues allows the senders to write to its receivers without any coordination. Hence, when using one-
sided protocols, such as RDMA or GPUDirect, this operation can be performed asynchronously
without any synchronization from even the receiving node’s hardware. This architecture ensures
one-sided communication and scales better as the number of nodes increase. Furthermore, this
style of communication is optimal for dual-averaging methods that send updates using one-sided
undirected graphs and do not need to perform a consensus operation to ensure convergence.

We now describe the parallel learning algorithm used by RWDDA based on the theory of random
walk over connected graphs.

3.2 RWDDA algorithm

RWDDA algorithm is shown step-by-step in Algorithm 2. In this algorithm, each node i keeps a
local estimate xi and a dual variable zi maintaining an accumulated subgradient. At iteration t, to
update zi, each node needs to collect the z-values of its neighbors, forms a convex combination
with equal weight of the received information and adds its most recent local subgradient scaled by
|N (i)|+ 1. After that, the dual variables zi is projected to the primal space to obtain xi.

To implement the RWDDA method, each node only needs to know its neighborhood information,
which makes the algorithm robust to any changes in the network topology, which may occur fre-
quently from node or edge failures. As possibly inferred from the name, RWDDA method ro-
bustifies the distributed dual averaging (DDA) method [3], based on the theory of random walk
over undirected graph [31]. However, the original DDA method heavily relies on the fact that the
consensus matrix is doubly stochastic , which requires regular node communication graphs. This

3

Algorithm 1 RWDDA Method
Input: a predetermined non-negative non-increasing sequence {α(t)}.
Initialization: xi(0) = zi(0) = 0, for all i ∈ [n].
for t = 0, 1, 2, . . . , do

1. Subgradient calculation:

gi(t) ∈ ∂fi(xi(t)), for each agent i. (3.1)

2. Dual updates:

zi(t+ 1) =

∑
j∈N (i)∪{i} zj(t) + gi(t)

|N (i)|+ 1
, (3.2)

for each agent i.

3. Primal updates:

xi(t+ 1) = PX [−α(t)zi(t+ 1)] (3.3)

:= arg min
x∈X

‖x+ α(t)zi(t+ 1)‖2 ,

for each agent i.

end for

requirement restricts the DDA method from being fully distributed, especially when facing changes
in network topology. Specifically, whenever a link or node failure happens, the DDA method has to
stop the algorithm and reconfigure its consensus matrix using a central master node, which makes it
impractical in real settings such as in the case of peer-to-peer sensors. To overcome this difficulty,
RWDDA method self-adjusts the consensus matrix at a feasible local level, by using a row stochastic
matrix plus a gradient scaling trick. RWDDA requires only that the communication matrix P is row
stochastic, which allows non-regular communication graphs. We establish the theory for RWDDA
method by borrowing ideas from the random walk theory from stochastic process.

We briefly describe the intuition behind the correctness of our DDA. We provide the convergence
proof for Algorithm 2 in supplementary materials.

For notational convenience, we will define the matrix P ∈ Rn×n with Pij being 1
|N (i)+1| for

j ∈ N (i) ∪ {i} and 0 otherwise. Clearly, P is a row stochastic matrix, i.e. the sum of every row
of P equals 1. We will also define the vector π ∈ Rd with the i-th entry πi being |N (i)|+1

β , where
β := 2|V|+ |E|. It can easily verified that π is a probability vector, i.e. πi > 0 and

∑
i∈[n] πi = 1.

With these notations, we are able to express (6.2) in a terser way. Imagine X ⊆ R, so xi(t), zi(t)
and gi(t) are now all scalars. Then we can rewrite the update (6.2) as

z(t+ 1) = Pz(t) +
1

β
diag (π)

−1
g(t)

=
1

β

t∑
s=0

P sdiag (π)
−1
g(t− s), (3.4)

with z(t) = (z1(t), z2(t), · · · , zn(t))
> and g(t) = (g1(t), g2(t), · · · , gn(t))

>. As we need
each node to play the same role in the system, from (3.4), it is quite reasonable to require
P∞diag (π)

−1
= 1n×n, where P∞ := limt→∞P

t and 1n×n is the n by n matrix with all
entries as one. Indeed, we can verify this requirement by the close connection between P and π,
as revealed in the following lemma, which can be regarded as a direct consequence of results for
random walk under undirected graph [31]. This also justifies the appearance of random walk in the
name of our algorithm.

4

3.3 RWDDA system improvements

For our RWDDA implementation, on every node k, we loop over the local training examples. For
every iteration t, we choose an example i, and calculate the local gradient gi and update the current
model xtk. In distributed optimization across multiple nodes, we perform a push operation of the
computed gradients and perform a reduce operation on the received gradients. In the reduce step,
we sum any incoming gradient contributions (dual vectors) as zt

′

k =
∑
j∈Ik zj and incorporate

gradient gi into dual zk as zt+1
k =

zt′
k +gi

|Ik|+1 . After processing a batch of examples on every machine
(about 500-5000), we push dual gradient zt+1

k via out-edges Ok. We also choose learning rate ηtk
and apply the dual gradient zt+1

k as xt+1
k = −ηtk · zi. Finally, each node also maintains and updates

the running average or the consensus model as x̂t+1
k =

∑t+1
i=1 x

i
k/(t+ 1) = t

t+1 x̂
t
k + 1

t+1x
t+1
k .

To improve performance, we perform the following three optimizations.

1. First, instead of calculating the full gradient on every iteration, we only compute the sparse
gradient and separately correct the regularizer [6].

2. Second, instead of sending z (or w for model averaging) after every update step to all
other nodes, we send it infrequently to reduce communication costs. Each node locally
processes examples (usually 500-5000), and then communicates z. We adjust the learning
rate parameter η to account for the batched communication.

3. Finally, we maintain a running sum average over the dual, and only compute this sum only
during reduce (incoming z parameters). Furthermore, in our asynchronous implementation
if there are no incoming dual variables (z), we skip updating the average. We find that
the above optimizations give us significant speedups (over 200X) allowing the dual space
algorithms that we implement, to operate as fast as primal space algorithms.

4 Experiments

RWDDA provides distributed machine learning over shared memory for Leon Bottou’s SVM-
SGD [5]. We implement RWDDA simple model averaging and PS-DDA over SVM SGD. We
implement model averaging such that each machine calculates the partial gradient and sends it to
other machines via a push operation. Each machine averages the received gradients in a reduce
step and updates its model weight vector(w) locally. In our implementation, RWDDA and model
averaging communicate variables in a one-sided fashion without requiring an acknowledgment and
we use the one-sided primitives over RDMA to perform this low latency communication.

We now evaluate the RWDDA algorithm for training SVM using the RCV1 and the webspam
dataset [2]. We evaluate RWDDA according to the following criteria:

1. Performance: How does RWDDA compare with existing primal and dual methods? We
evaluate performance for the case when data is not randomly distributed across the ma-
chines (non-i.i.d case) with dense and sparse networks.

2. Fault tolerance: How does RWDDA behave with non-i.i.d. data and in the presence of
link failures?

We perform all experiments on an eight machine research cluster connected via an infiniBand back-
plane. We run multiple processes, across these four machines, and we refer to each process as a
rank (from the HPC terminology). We run multiple ranks on each machine, especially for mod-
els with less than 1M parameters, where a single model replica is unable to saturate the network
and CPU. Each machine has an Intel Xeon 8-core, 2.2 GHz Ivy-Bridge processor with support for
SSE 4.2/AVX instructions, and 64 GB DDR3 DRAM. Each machine is connected via a Mellanox
Connect-V3 56 Gbps infiniBand cards. Our 56 Gbps infiniBand network architecture provides a
peak throughput of slightly over 40 Gbps after accounting for the bit-encoding overhead for reliable
transmission. All machines share storage using a 10 TB NFS partition that we use for loading input
data. Each process loads a portion of data depending on the number of processes. For all our exper-
iments, we partition the input data and assign positive or negative subsets to each node. Hence, we
perform all our training with a sampling bias over non-i.i.d data unless mentioned otherwise. All

5

(a) i.i.d data (b) non-i.i.d data (c) non-i.i.d data +
30% failure probability

(d) non-i.i.d data +
60% failure probability

(e) non-i.i.d data +
10% failure probability
w/ sparse node graph

(f) non-i.i.d data +
90% failure probability
w/ sparse node graph

— irondda

— modelavg

— irondda

— modelavg

— irondda

— modelavg

— irondda

— modelavg

— irondda

— modelavg

— irondda

— modelavg

Figure 1: This figure shows the convergence of RWDDA with model averaging for 6 parallel ranks
(processes across machines) and all ranks exchange parameters with one another for the RCV1 dataset.
Each rank communicates z or w after processing a local epoch (slightly over 3300 examples). Figure
(a) shows performance over i.i.d data where RWDDA and model averaging compare favorably. Figure
(b) shows this performance for non-i.i.d data. Figure (c) and (d) show convergence comparisons for
30% and 60% probability of packet losses. We find that RWDDA converges in both cases. Figures (e)
and (f) illustrate performance comparisons for sparse node graph where each machine only exchanges
parameters with N/2 machines.

(b) non-i.i.d data +
30% failure probability

(a) non-i.i.d data +
async executiion

— irondda

— modelavg
— irondda

— modelavg

Figure 2: This figure shows the convergence of RWDDA as compared to model averaging for 16 parallel
ranks (processes across machines) and all ranks exchange parameters with one another for the webspam
dataset. Each rank communicates z or w after processing a local epoch (slightly over 5000 examples).
Figure (a) shows asynchronous performance over non-i.i.d data where RWDDA and model averaging.
Figure (b) shows this performance for non-i.i.d data and 30% probability of packet losses. We find that
RWDDA converges correctly in both cases.

reported times do not account the initial one-time cost for the loading the data-sets in memory. All
times are reported in seconds.

We compare RWDDA and model averaging with the applicable optimizations described in the pre-
vious section. Model averaging is computationally efficient because of its simple update step. We
also implement failure resiliency in both the algorithms by appropriately detecting the number of
nodes sending parameters and correctly computing a scaling factor. We run all our experiments over
six ranks. Each rank represents a process that may span multiple machines and each rank trains over
a subset of data. For our experiments, the six ranks span across three machines.

We compare the average training error over all ranks w.r.t. wall clock time in Figures 1 (a) and (b).
In this section, we compare the performance of RWDDA and model averaging without failures. We
choose a densely connected network graph where each machine synchronizes parameters with all
other machines. Figure (a) shows the convergence for i.i.d. data where both model averaging and

6

— irondda

— modelavg

— psdda

Figure 3: This figure compares model-averaging, RWDDA and PS-DDA for 30% probability of packet
loss. We demonstrate results for average convergence across ranks and we find that PS-DDA suffers from
numerical instability in the scalar that results in incorrect convergence.

RWDDA converge correctly. For non-i.i.d. data, we find that RWDDA converges faster in time, and
achieves a stable accuracy better than model averaging. Hence, we find that with our optimizations,
our dual-order method, RWDDA, performs as good as primal order model averaging. From the
optimizations described in previous section, we are able to obtain more than 200X speedup from
the original RWDDA implementation. Furthermore, for the non-i.i.d. dataset, RWDDA converges
correctly unlike model averaging.

4.1 Fault Tolerance

We now compare RWDDA performance in the presence of intermittent link failures. Each outgoing
packet may fail with a specific user-defined probability. The failures are asymmetric i.e. nodes
with positive examples are less likely to fail than those with negative examples. We repeat our
experiments for different overall failure probability goals. For our fault tolerance experiments, we
remove the barrier before the update step, since some packets may never arrive due to failures and a
barrier will lead to infinite wait. Hence, we perform our fault tolerance experiments by running the
algorithms asynchronously.

Figures 1 (c) and (d) show RWDDA and model convergence with 30% and 60% packet loss proba-
bility where all machines communicate with one-another forming a dense communication graph of
nodes. We find that RWDDA is more robust to link failures and offers correct convergence which
model averaging is unable to achieve. To account for fewer incoming z parameters due to the asyn-
chrony, we appropriately re-scale the gradient or the averaging fraction by counting the number of
incoming z or g parameters.

We now provide performance comparisons with undirected sparse communication graphs i.e. where
all nodes may not communicate with one another. Instead of communicating with all other machines
(or processes), each machine only communicates with N/2 other machines such that the network
graph of all machines is connected and the graph is undirected, whereN is the total number of nodes.
We compare RWDDA and model-averaging over a sparse communication graph in Figure 1 (e) and
(f) with 10% and 90% packet loss probability. We find that model averaging does not converge
correctly in Figure 1 (f) while RWDDA achieves correctly.

Figures 2 (a) and (b) shows this comparison with the webspam dataset consisting of 16.6M param-
eters, running over 16 processes. We find that for large datasets too, RWDDA is robust against
asynchrony or failures in the presence of non-i.i.d. datasets.

Comparisons with PS-DDA We implement Push-Sum DDA [33] in our framework and apply the
same optimizations as RWDDA to improve its performance. Figure 3 compares model averaging,
RWDDA and PS-DDA for failures with 30% probability of packet loss for a specific rank, with
non-i.i.d. data. PS-DDA requires sending an additional scaling component. Additionally, in the
asynchronous case or in presence of failures, PS-DDA suffers from numerical instability [33]. In
asynchronous mode, since different nodes operate at different speeds, the scalar may become very

7

small due to repeated re-scaling. To prevent this from happening, in our implementation, we reset
the scalar to its initial value (1.0) if it becomes too large or too small. As a result, of the numerical
instability we find that PS-DDA is unable to converge in the presence of packet losses and non-i.i.d.
data. However, we find that PS-DDA performs comparably with RWDDA in absence of failures
(not shown in figure).

To summarize, from our evaluation we find that RWDDA has good convergence properties and our
implementation of RWDDA is robust and efficient.

5 Conclusion

Distributed learning over a large number of distributed sensors or geographically separated data
centers suffers from sampling biases and communication link failures. Existing dual averaging
approaches are slow, and may not converge correctly in the presence of link-failures, which are fairly
common in real world deployments. This happens because these algorithms such as DDA make the
assumption that the communication/transition matrix P is doubly stochastic, which requires regular
node communication graphs.

We present RWDDA a distributed learning algorithm that is robust to failures. RWDDA requires
only that the communication matrix P is row stochastic, which allows non-regular communication
graphs. This graph structure then allows an easy weighting scheme to maintain convergence to the
correct fixed points. Our analysis shows the algorithm has O(1/

√
t) convergence for non-smooth

convex problems. Our experiments show that RWDDA converges as fast as primal averaging algo-
rithms and provides smooth convergence.

References
[1] Vowpal Wabbit. http://hunch.net/ vw/.

[2] PASCAL Large Scale Learning Challenge. http://largescale.ml.tu-berlin.de, 2009.

[3] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In Advances in Neural Infor-
mation Processing Systems, 2011.

[4] F. Bénézit, V. Blonde, P. Thiran, J. Tsitsiklis, and M. Vetterli. Weighted gossip: Distributed averaging
using non-doubly stochastic matrices. In Information theory proceedings (isit), 2010 ieee international
symposium on. IEEE, 2010.

[5] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Springer COMPSTAT, 2010.

[6] L. Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, pages 421–436.
Springer, 2012.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE/ACM Transactions
on Networking (TON), 14(SI):2508–2530, 2006.

[8] W. Chen, Z. Wang, and J. Zhou. Large-scale l-bfgs using mapreduce. In Advances in Neural Information
Processing Systems, 2014.

[9] W. Dai, J. Wei, X. Zheng, J. K. Kim, S. Lee, J. Yin, Q. Ho, and E. P. Xing. Petuum: A framework for
iterative-convergent distributed ml. arXiv preprint arXiv:1312.7651, 2013.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior,
P. A. Tucker, et al. Large scale distributed deep networks. In NIPS, 2012.

[11] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of markov chains. The Annals of Applied
Probability, pages 36–61, 1991.

[12] A. G. Dimakis, S. Kar, J. Moura, M. G. Rabbat, and A. Scaglione. Gossip algorithms for distributed
signal processing. Proceedings of the IEEE, 98(11):1847–1864, 2010.

[13] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed optimization: convergence
analysis and network scaling. Automatic Control, IEEE Transactions on, 57(3):592–606, 2012.

[14] F. Iutzeler, P. Ciblat, and W. Hachem. Analysis of sum-weight-like algorithms for averaging in wireless
sensor networks. Signal Processing, IEEE Transactions on, 61(11):2802–2814, 2013.

[15] D. Jakovetic, J. Xavier, and J. M. Moura. Fast distributed gradient methods. Automatic Control, IEEE
Transactions on, 59(5):1131–1146, 2014.

[16] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In Foundations
of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on. IEEE, 2003.

8

http://leon.bottou.org/papers/bottou-2010

[17] L. Lamport. Generalized consensus and paxos. Technical report, Technical Report MSR-TR-2005-33,
Microsoft Research, 2005.

[18] J. Langford, A. Smola, and M. Zinkevich. Slow learners are fast. arXiv preprint arXiv:0911.0491, 2009.

[19] H. Li, A. Kadav, E. Kruus, and C. Ungureanu. Malt: distributed data-parallelism for existing ml applica-
tions. In Proceedings of the Tenth European Conference on Computer Systems. ACM, 2015.

[20] M. Li, D. Andersen, A. Smola, J. Park, A. Ahmed, V. Josifovski, J. Long, E. Shekita, and B.-Y. Su.
Scaling distributed machine learning with the parameter server. In USENIX OSDI, 2014.

[21] Q. Ling, Z. Wen, and W. Yin. Decentralized jointly sparse optimization by reweighted minimization.
Signal Processing, IEEE Transactions on, 61(5):1165–1170, 2013.

[22] Q. Ling, Y. Xu, W. Yin, and Z. Wen. Decentralized low-rank matrix completion. In Acoustics, Speech
and Signal Processing (ICASSP), 2012 IEEE International Conference on. IEEE, 2012.

[23] A. Nedić. Distributed optimization. In Encyclopedia of Systems and Control, pages 1–12. Springer
London, 2014.

[24] A. Nedic and A. Olshevsky. Distributed optimization over time-varying directed graphs. Automatic
Control, IEEE Transactions on, 60(3):601–615, 2015.

[25] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization. Automatic
Control, IEEE Transactions on, 54(1):48–61, 2009.

[26] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,
120(1):221–259, 2009.

[27] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media, 2006.

[28] A. Olshevsky and J. N. Tsitsiklis. Convergence speed in distributed consensus and averaging. SIAM
Journal on Control and Optimization, 48(1):33–55, 2009.

[29] S. S. Ram, A. Nedić, and V. V. Veeravalli. Distributed stochastic subgradient projection algorithms for
convex optimization. Journal of optimization theory and applications, 147(3):516–545, 2010.

[30] S. S. Ram, A. Nedić, and V. V. Venugopal. A new class of distributed optimization algorithms: Applica-
tion to regression of distributed data. Optimization Methods and Software, 27(1):71–88, 2012.

[31] S. Ross. Stochastic processes, volume 2. John Wiley & Sons New York, 1996.

[32] W. Shi, Q. Ling, G. Wu, and W. Yin. Extra: An exact first-order algorithm for decentralized consensus
optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

[33] K. Tsianos, S. Lawlor, and M. G. Rabbat. Consensus-based distributed optimization: Practical issues
and applications in large-scale machine learning. In Communication, Control, and Computing (Allerton),
2012 50th Annual Allerton Conference on. IEEE, 2012.

[34] K. Tsianos, S. Lawlor, and M. G. Rabbat. Push-sum distributed dual averaging for convex optimization.
In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012.

[35] K. Tsianos and M. G. Rabbat. Distributed dual averaging for convex optimization under communication
delays. In American Control Conference (ACC), 2012. IEEE, 2012.

[36] E. Wei and A. Ozdaglar. On the O(1/k) convergence of asynchronous distributed alternating direction
method of multipliers. In Global Conference on Signal and Information Processing (GlobalSIP), 2013
IEEE. IEEE, 2013.

[37] L. Xiao. Dual averaging method for regularized stochastic learning and online optimization. In Advances
in Neural Information Processing Systems, 2009.

[38] K. Yuan, Q. Ling, and W. Yin. On the convergence of decentralized gradient descent. arXiv preprint
arXiv:1310.7063, 2013.

[39] K. Yuan, Q. Ling, W. Yin, and A. Ribeiro. A linearized bregman algorithm for decentralized basis pursuit.
In Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European. IEEE, 2013.

[40] J. Zeng and W. Yin. Extrapush for convex smooth decentralized optimization over directed networks.
arXiv preprint arXiv:1511.02942, 2015.

[41] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient descent. In NIPS, 2010.

6 Convergence Analysis

Lemma 1. π>P = π> and P∞ := limt→∞P
t = 1 · π>.

9

Proof. Consider a discrete-time Markov chain with state space as V and transition matrix specified
by P . It can be easily seen that this Markov chain is irreducible and aperiodic. Therefore, there
exists a unique stationary distribution d satisfying d ≥ 0, 1>d = 1, d>P = d> and P∞ = 1 ·d>.
Since the probability vector π satisfies the so-called detailed balance equation, i.e. πiPij = πjPji,
π is the stationary distribution, i.e. d = π.

6.1 RWDDA algorithm

Algorithm 2 RWDDA Method
Input: a predetermined non-negative non-increasing sequence {α(t)}.
Initialization: xi(0) = zi(0) = 0, for all i ∈ [n].
for t = 0, 1, 2, . . . , do

1. Subgradient calculation:

gi(t) ∈ ∂fi(xi(t)), for each agent i. (6.1)

2. Dual updates:

zi(t+ 1) =

∑
j∈N (i)∪{i} zj(t) + gi(t)

|N (i)|+ 1
, (6.2)

for each agent i.

3. Primal updates:

xi(t+ 1) = PX [−α(t)zi(t+ 1)] (6.3)

:= arg min
x∈X

‖x+ α(t)zi(t+ 1)‖2 ,

for each agent i.

end for

In this section, we will provide an O(1/
√
t)-convergence result for Algorithm 2 when α(t) is prop-

erly chosen as O(1/
√
t).

We first present two useful lemmas. The first one is standard in convex analysis. and the second one
is from [3], which modifies slightly the result in [26].

Lemma 2. For any u, v ∈ Rd, ‖PX [u]− PX [v]‖ ≤ ‖u− v‖.

Lemma 3. Let {h(t)}∞t=1 ⊂ Rd be an arbitrary sequence of vectors and {α(t)}∞t=1 be a positive
and non-increasing sequence. Consider the sequences {z̄(t)}∞t=0 with z̄(0) = 0 and {y(t)}∞t=1
constructed as follows:

y(t+ 1) = PX [−α(t)z̄(t)],

z̄(t+ 1) = z̄(t) + h(t), t = 0, 1, 2,

Then for any x? ∈ X , we have

T∑
t=1

〈h(t),y(t)− x?〉

≤ 1

2

T∑
t=1

α(t− 1) ‖h(t)‖2 +
1

2α(T)
‖x?‖ .

Now, we can proceed to our proof for the RWDDA.

10

Lemma 4. Consider the sequences {xi(t)} and {zi(t)} generated by random-walk distributed dual
averaging (Algorithm 2). Then for any x? ∈ X and for each node i ∈ [n], we have

f̄ (x̂i (T))− f̄(x?)

≤ L2n

2βT

T∑
t=1

α(t− 1) +
β

2nTα(T)
‖x?‖2

+
L

T

T∑
t=1

α(t)

 2

n

n∑
j=1

‖z̄(t)− zj(t)‖ + ‖z̄(t)− zi(t)‖

 , (6.4)

where x̂i(T) = 1
T

∑T
t=1 xi(t) and z̄(t) =

∑n
i=1 πizi(t).

Proof. For simplicity, we assume X ⊆ R, so xi(t), zi(t) and gi(t) are now all scalars. Denote
z(t) = (z1(t), . . . , zn(t))> ∈ Rd, and g(t) = (g1(t), . . . , gn(t))> ∈ Rd.

Based on the dynamics (6.2), we can write

z(t+ 1) = Pz(t) +
1

β
diag (π)

−1
g(t). (6.5)

Then one has the π-weighted average

z̄(t+ 1) = π>z(t+ 1) = π>Pz(t) +
1

β
π>diag (π)

−1
g(t)

= π>z(t) +
1

β
1>g(t) = z̄(t) +

1

β
1>g(t),

where we have used the fact that π>P = π> in Lemma 1.

Now define

y(t+ 1) = PX [−α(t)z̄(t)], t = 0, 1, 2, . . . , (6.6)

and we start to bound our target f(x̂i(T))− f(x?),

f(x̂i(T))− f(x?)

≤ 1

T

T∑
t=1

(
f(xi(t))− f(x?)

)

≤ 1

T

T∑
t=1

(
f(y(t))− f(x?)

)
+

1

T

T∑
t=1

(
f(xi(t))− f(y(t))

)

≤ 1

nT

T∑
t=1

n∑
i=1

(
fi(y(t))− fi(x?)

)
+
L

T

T∑
t=1

‖xi(t)− y(t)‖ , (6.7)

where the first inequality is due to convexity, and last line holds as f is L-Lipschitz.

Now let us fucus on the term fi(y(t))− fi(x?),

fi(y(t))− fi(x?)

=

(
fi(y(t))− fi(xi(t))

)
+

(
fi(xi(t))− fi(x?)

)
≤ L ‖y(t)− xi(t)‖ + 〈gi(t), xi(t)− x∗〉
= L ‖y(t)− xi(t)‖ + 〈gi(t), xi(t)− y(t)〉+ 〈gi(t), y(t)− x?〉
≤ L ‖y(t)− xi(t)‖ + L ‖y(t)− xi(t)‖ + 〈gi(t), y(t)− x?〉
≤ 2L ‖y(t)− xi(t)‖ + 〈gi(t), y(t)− x?〉 , (6.8)

where the second inequality holds as fi is L-Lipschitz and gi(t) ∈ ∂fi(xi(t)), and the second last
line is due to ‖gi‖ ≤ L.

11

Substituting (6.8) into (6.7), we obtain

f(x̂i(T))− f(x?) ≤ 1

nT

T∑
t=1

n∑
i=1

〈gi(t), y(t)− x?〉

+
L

T

T∑
t=1

(
2

n

n∑
i=1

‖y(t)− xi(t)‖ + ‖y(t)− xi(t)‖
)
. (6.9)

Next, we will look at the two terms in (6.9) respectively. For the first term,

1

nT

T∑
t=1

n∑
i=1

〈gi(t), y(t)− x?〉

=
β

nT

T∑
t=1

〈
1>g(t)

β
, y(t)− x?

〉

≤ β

2nT

T∑
t=1

α(t− 1)

∥∥∥∥1>g(t)

β

∥∥∥∥2 +
β

2nTα(T)
‖x?‖2

≤ L2n

2βT

T∑
t=1

α(t− 1) +
β

2nTα(T)
‖x?‖2 , (6.10)

where the second line results from Lemma 3 (with 1>g(t)/β playing the role of h(t) in Lemma 3).

Regarding the second term in (6.9), note that

‖y(t)− xi(t)‖ = ‖PX [−α(t)z̄(t)]− PX [−α(t)z̄i(t)]‖
≤ ‖−α(t)(z̄(t)− zi(t))‖ ≤ α(t) ‖z̄(t)− zi(t)‖ . (6.11)

by Lemma 2.

Finally, substituting (6.10) and (6.11) into (6.9) yields our desired (6.4).

Lemma (4) provides a nice characterization of the deviation from the optimal value over all nodes.
The first two terms in (6.4) are common optimization error terms pertaining to subgradient algo-
rithms. The third term reflects the nature of distributed optimization, where each node has its own
estimate of the average gradient that deviates from each other. Next, we will show an upper bound
for the deviation term ‖z̄(t)− zi(t)‖.
Lemma 5. Consider the sequences {xi(t)} and {zi(t)} generated by random-walk distributed dual
averaging (Algorithm 2). Define z̄(t) = π>z(t). Then we have,

‖z̄(t)− zi(t)‖ ≤
L

βπmin

√
1− πi
πi

1

1− σ2(P)
, (6.12)

where πmin = min{πi} and σ2(·) denotes the second largest singular value.

Proof. For simplicity, we assume X ⊆ R, so xi(t) and zi(t) are now scalars. Denote z(t) =

(z1(t), z2(t), · · · , zn(t))
> and g(t) = (g1(t), g2(t), · · · , gn(t))

>. Also, in the following proof, we
will omit the superscript w for notational convenience.

Due to (6.2), we have, for t = 1, 2, . . . ,

z(t) =
1

β
diag (π)

−1
g(t− 1) + Pz(t− 1)

=
1

β

t∑
s=1

P s−1diag (π)
−1
g(t− s). (6.13)

12

So,

zi(t) =
1

β

t∑
s=1

e>i P
s−1diag (π)

−1
g(t− s), and

z̄(t) = π>z(t) =
1

β

t∑
s=1

π>P s−1diag (π)
−1
g(t− s)

=
1

β

t∑
s=1

π>diag (π)
−1
g(t− s). (6.14)

Thus,

‖z̄(t)− zi(t)‖

=
1

β

∥∥∥∥∥
t∑

s=1

(
π> − e>i P s−1)diag (π)

−1
g(t− s)

∥∥∥∥∥
≤ L

βπmin

t∑
s=1

∥∥π> − e>i P s−1∥∥
1
. (6.15)

Based on the Prop. 3 of [11], ∥∥π> − e>i P s−1∥∥
1
≤
√

1− πi
πi

σs−12 . (6.16)

Substitute (6.16) into (6.15), we have

‖z̄(t)− zi(t)‖ ≤
L

βπmin

t∑
s=1

√
1− πi
πi

σs−12

≤ L

βπmin

√
1− πi
πi

1

1− σ2(P)
,

which completes the proof.

Finally, we are ready to present the convergence theorem by combining Lemma 4 and Lemma 5.
Theorem 1. Consider the sequences {xi(t)} and {zi(t)} generated by random-walk distributed
dual averaging (Algorithm 2). Define the running average at each node i as x̂i(T) = 1

T

∑T
t=1 xi(t).

Then for any x? ∈ X with ‖x?‖ ≤ R, and for each node i ∈ [n], one has

f̄ (x̂i (T))− f̄(x?) ≤ 2LR√
nT (1− σ2(P)π

3/4
min

(6.20)

when the step size α(t) is chosen as β(πmin)
3/4
√

1−σ2(P)R

4L
√
n

· 1√
t
.

Proof. Let us choose α(t) in the form of c/
√
t, where c is to be optimized later.

Plugging (6.12) into (6.4), we reach

f̄ (x̂i (T))− f̄(x?)

≤ L2n

β
√
T
· c+

β

2n
√
T
R2 · 1

c
+

6L2

√
Tβπ

3/2
min(1− σ2(P))

· c

≤ 7L2

√
Tβπ

3/2
min(1− σ2(P))

· c+
β

2n
√
T
R2 · 1

c
, (6.21)

where we have used the fact that
∑T
t=1 t

−1/2 ≤
∫ T
t=0

t−1/2dt =
√
T .

The claimed result holds directly as we optimize the upper bound (6.21) with respect to the parameter
c.

13

Algorithm 3 Generalized Iron Distributed Dual Averaging Method
Input: a predetermined nonnegative nonincreasing sequence {α(t)}.
Initialization: xi(0) = zi(0) = 0, for all i ∈ [n].
for t = 0, 1, 2, . . . , do

1. Stochastic subgradient calculation:

E [gi(t)] ∈ ∂fi(xi(t)), for each agent i. (6.17)

2. Dual updates:

zi(t+ 1) =

∑
j∈N (i)∪{i} zj(t) + gi(t)

|N (i)|+ 1
, (6.18)

for each agent i.

3. Primal updates:

xi(t+ 1) = Proxtα(t)φ(·)[−α(t)zi(t+ 1)] (6.19)

= arg min
x

1

2
‖x+ α(t)zi(t+ 1)‖2 + tα(t)φ(x),

for each agent i.

end for

7 Extension

Our random-walk distributed dual averaging method can be easily adapted to incorporate stochastic
gradients to solve an optimization problem with a convex regularizer (e.g. `1, nuclear norm). Specif-
ically, Algorithm 3, a natural modification of the random-walk distributed dual averaging method
(Algorithm 2), is capable of solving

min
x

1

n

n∑
i=1

fi(x) + φ(x), (7.1)

where φ(x) is a convex regularizer. Its convergence proof follows directly from combining our
analysis above and arguments used in previous literature [37, 3], which we omit here.

14

	Introduction
	Background
	Problem Statement
	Related Work

	RWDDA for resilient consensus optimization
	RWDDA system design
	RWDDA algorithm
	RWDDA system improvements

	Experiments
	Fault Tolerance

	Conclusion
	Convergence Analysis
	RWDDA algorithm

	Extension

