Random Walk Distributed Dual Averaging Algorithm NEC

COLUMBIA
UNIVERSITY

Cun Mu*, Asim Kadav, Erik Kruus, Donald Goldfarb* and Martin Rengiang Min
NEC Labs, Princeton Columbia University*

coordinating resource.

5 Lo NN O
N YN

coordinating resource

\

Peer-to-peer parallel learning

Performed over a network of sensors, mobile
devices or geographically separated data centers.

Parallel learning over peer nodes without a central B))
+ Non-iid data: The peer replicas may process non independent

and identically distributed datasets. For example, physical
sensors or data centers may collect biased samples.

Network is robust to failure due to lack of a central

min f(x) =+

Challenges in peer-to-peer learning

« Random link failures: There may be intermittent link failures that
may affect convergence for large scale learning

Goal: Provide a distributed consensus algorithm that provably
converges in presence of non-iid data and link failures

7 iz fi(®@)

\

st.x e X CR?

/" Our Solution: RWDDA

Random-Walk Distributed Dual Averaging

® Row stochastic consensus protocol

¢ Robustify DDA[4] against node/edge failures

® Each node receives dual updates only from neighbors

® Borrows basic theories in random-walk over undirected graph

Algorithm description

Input: a predetermined nonnegative nonincreasing sequence {a(t)}.
Initialization: a;(0) = z;(0) = 0, forall i & [n].
fort=0.1,2.....do

1. Subgradient calculation: gi(t) € Ofi(mi(t)), for each agent i.

2. Dual updates: Zientin %) +9:0)

zi(t+1) = N1

. for each agent i.

3. Primal updates:
@i(t+1) = Pal-a(®)zt + 1] i= arg min [l +a(®)z(t+ 1|, for cach agent i
e

end for

" Insights into RWDDA

Update steps in RWDDA

2i(t) + 2 jeniy 2i(t)
V(@) +1

e

averaging Pz(t)

gi(t)
V(@) +1

\

scaled gradient

zZi(t+1) «

T

2(t) = (z1(1), 22(1), - -, zn(t))

P = diag(deg(i) + 1); ' (Liee),,

Algorithm insights (i): Our dual update consists of two components, one is the averaging component,
and the other is the gradient update component. We write the averaging component compactly in a
matrix form P3(1), where z(®) represents dual variables. We scale the gradient to make dual averaging|4]
robust against communication delays. Furthermore, P is a consensus matrix that is row stochastic.

t-th iteration
"

@lt)

"Broadcast:

Every node broadcasts
to its neighbors

=Self-update: e T
Every node in parallel M,,,,C: 1
updates 1 5
2i(t) + Xjeng 2ilt) + git)
zi(t+1) « 7\.{’(,)“1

zi(t+1) —a(t)zi(t + 1)

Algorithm description: For the t-fh iteration, there are two steps: broadcasting step and self-updating
step. In the broadcasting step, every node i broadcasts its dual variable z_i to all its neighbors. In the
subsequent self-updating step, every node in parallel does the following, It first averages the received
dual variables and its gradient at x_i(9). And then update x_i()) by simply negative scaling the dual
variable.

Design RWDDA's solution

requirements

RWDDA communication requirement is
only one-sided (no hand-shake
required). This is useful for
asynchronous learning and using
RDMA protocols that provide high
speed one-sided semantics.

Efficient
communication

The algorithm is robust to change in
network topology or non-iid data.
RWDDA only requires nodes to
communicate to its neighbors. It can
self-adapt the scaling parameter.

We establish (1/sq. root (t))
convergence for the convex case. For
the convergence analysis, please see
our paper[2].

Robust

Provable
convergence

RWDDA is extensible to stochastic
(sub) gradient and regularizers.
Furthermore, asynchronous
implementation is straightforward.

Extensible

- J

Gradient scaling in RWDDA

®"Row-stochastic consensus protocol

P = diag(deg(i) + ;" (Ljee)
e
I

P> = lim P' =
t—o0

=*The stationary dist.

— 7+ the influence that node
- need to scale the gradient

plays in the network

gi(t) = gi(t)/nm;

i Pt
Algorithm insights (ii) : Since P is row stochastic, 11 P ‘is a rank-1 matrix with all rows identical,
say 77 Specifically, 77 (i) represents the influence node 1 plays in the network during the optimization

steps. Since, we want each node to have equal influence we scale: g, () — g,(t)/nm;

Calculating P locally in RWDDA

= Exact 7T is hard to obtain locally
= But
- random walk over undirected graph
- m; < deg(i) + 1
- sufficient for this scaling purpose

N
i
_ T ~ >

-
~ f2

g=W.8

Algorithm insights (iii) : Exact 7T is hard to obtain locally. This means that when network topology
changes, we may have to recalculate 77 with central coordination as in [5]. To avoid this situation, we

_/
4 Results h
We integrate RWDDA with MALT and compare

with model averaging with SVM[3] with the RCV1
dataset, both implemented over MALT[1].

Computing the
full gradient at
each step is
expensive

We only compute the sparse gradient
and separately correct the regularizer.

Communicating
z after each
iteration strains
the network

We only send z after nods locally
process a batch (500-5000) and adjust
the learning rate to account for this
batched communication.

We maintain a running sum average

Re-calculating z over the dual, and only compute this

is expensive sum only during reduce (i.e. when z
parameters arrive).
10 =9
: H — rwdda
08 (a) non-i.i.d data I_l_ modelava |
06 . : 4

§

: 04 4
02 - o
00 L L L

0.0 05 10 15 20

Figure (a) shows training error vs time for RW-DDA and model averaging for six ranks for non-iid
dataset. Each machine communicates z after processing a local epoch (slightly over 3300 examples)

avg
10 T T T
= rwdda
(b):non-i.i.d. data with - ’““"e"“’ﬂl
08 randomlink failures’ T |
06 oo I 4
E
§
g ;
04 H H ceeet 4
02 i - -
MAN_ rs
00 ! ! n n
o 1 2 3 4 5

time
Figure (b) shows the same experiment with intermittent link failures. Each machine communicates z

Q«ne theory of random walk over undirected graph, to get7r by just using the local inl'ormalinn)

after processing a local epoch (slightly over 3300 examples). We find RW-DDA method to be stable and
qur to converge especially in the presence of failures. j

We demonstrate that RWDDA is a robust algorithm for
decentralized consensus optimization. We find that it
provides smooth convergence for non-iid data and in
the presence of link failures.

References and Related Work

[1] H. Li et. al., MALT: Distributed Data-parallelism for Existing ML
Applications. Eurosys 2015.

[2] C. Mu et. al., Random Walk Distributed Dual Averaging Method For
Decentralized Consensus Optimization, NIPS OPT 2015.

[3] L. Bottou. Large Scale Machine Learning with SGD. COMPSTAT 2010.
[4] A. Agrawal et. al., Distributed Dual Averaging in networks. NIPS 2010.
[5] K. Tsianos et. al., Consensus-based Distributed Optimization: Practical
Issues and Applications in Large-scale Learning, CCC 2012.

