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Parallel learning over peer nodes without a central 
coordinating resource. 

Performed over a network of sensors, mobile 
devices or geographically separated data centers. 

Network is robust to failure due to lack of a central 
coordinating resource

Our Solution: RWDDA 
Random-Walk Distributed Dual Averaging 

•  Row stochastic consensus protocol 
•  Robustify DDA[4] against node/edge failures 
•  Each node receives dual updates only from neighbors 
• Borrows basic theories in random-walk over undirected graph

Insights into RWDDA Results 
We integrate RWDDA with MALT and compare 
with model averaging with SVM[3] with the RCV1 
dataset, both implemented over MALT[1].

We demonstrate that RWDDA is a robust algorithm for 
decentralized consensus optimization. We find that it 
provides smooth convergence for non-iid data and in 
the presence of link failures. 
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Peer-to-peer parallel learning

• Non-iid data:  The peer replicas may process non independent 
and identically distributed datasets. For example, physical 
sensors or data centers may collect biased samples. 

• Random link failures:  There may be intermittent link failures that 
may affect convergence for large scale learning

Design 
requirements RWDDA's solution

Efficient 
communication

RWDDA communication requirement is 
only one-sided (no hand-shake 
required). This is useful for 
asynchronous learning and using 
RDMA protocols that provide high 
speed one-sided semantics.

Robust

The algorithm is robust to change in 
network topology or non-iid data. 
RWDDA only requires nodes to 
communicate to its neighbors. It can 
self-adapt the scaling parameter.  

Provable 
convergence

We establish (1/sq. root (t)) 
convergence for the convex case. For 
the convergence analysis, please see 
our paper[2].

Extensible

RWDDA is extensible to stochastic 
(sub) gradient and regularizers. 
Furthermore, asynchronous 
implementation is straightforward.

Challenges in peer-to-peer learning

(b) non-i.i.d. data with 
random link failures

(a) non-i.i.d data

Figure (a) shows training error vs time for RW-DDA and model averaging for six ranks for non-iid 
dataset.  Each machine communicates z after processing a local epoch (slightly over 3300 examples) 

Figure (b) shows the same experiment with intermittent link failures. Each machine communicates z 
after processing a local epoch (slightly over 3300 examples). We find RW-DDA method to be stable and 
faster to converge especially in the presence of failures. 

Algorithm description

Algorithm description: For the t-th iteration, there are two steps: broadcasting step and self-updating 
step. In the broadcasting step, every node i broadcasts its dual variable z_i to all its neighbors. In the 
subsequent self-updating step, every node in parallel does the following.  It first averages the received 
dual variables and its gradient at x_i(t). And then update x_i(t) by simply negative scaling the dual 
variable. 

Algorithm insights (i): Our dual update consists of two components, one is the averaging component, 
and the other is the gradient update component. We write the averaging component compactly in a 
matrix form Pz(t), where z(t) represents dual variables. We scale the gradient to make dual averaging[4] 
robust against communication delays. Furthermore, P is a consensus matrix that is row stochastic. 

Gradient scaling in RWDDA 

Algorithm insights (ii) : Since P is row stochastic,                 is a rank-1 matrix with all rows identical, 
say     . Specifically,      (i) represents the influence node i plays in the network during the optimization 
steps. Since, we want each node to have equal influence we scale: 

Update steps in RWDDA 

Calculating P locally in RWDDA  

Algorithm insights (iii) : Exact     is hard to obtain locally. This means that when network topology 
changes, we may have to recalculate     with central coordination as in [5]. To avoid this situation, we 
use the theory of random walk over undirected graph, to get     by just using the local information. 

Computation 
challenges Optimizing tricks

Computing the 
full gradient at 
each step is 
expensive

We only compute the sparse gradient 
and separately correct the regularizer.

Communicating 
z after each 

iteration strains 
the network

We only send z after nods locally 
process a batch (500-5000) and adjust 
the learning rate to account for this 
batched communication.

Re-calculating z 
is expensive

We maintain a running sum average 
over the dual, and only compute this 
sum only during reduce (i.e. when z 
parameters arrive).

Goal: Provide a distributed consensus algorithm that provably 
converges in presence of non-iid data and link failures

2 Problem Statement

In mathematical terms, the optimization problem is defined on a connected undirected network and solved by n agents
(computers) collectively,

min
x2X✓Rd

f̄(x) :=
nX

i=1

fi(x). (2.1)

The feasible set X is a closed and convex set in Rd and is commonly known by all agents, whereas fi : X 2 R
is a convex function privately known by the agent i. Throughout the paper, we also assume that fi is L-Lipschitz
continuous over X with respect to the Euclidean norm k·k. The network G = (N , E), with the node set N =
[n] := {1, 2, · · · , n} and the edge set E ✓ N ⇥N , specifies the topological structure on how the information can be
spread among agents through local agent interactions over time. In specific, each agent i can only send and retrieve
information from its neighbors N (i) := {j | (j, i) 2 E} and himself.

3 RW-DDA method

Our random-walk distributed dual averaging (RW-DDA) method is shown step-by-step in Algorithm 1. Literally, in
RW-DDA, each node i keeps a local estimate xi and a dual variable zi maintaining an accumulated subgradient. At
iteration t, to update zi, each node needs to collect the z-values of its neighbors, forms a convex combination with
equal weight of the received information and adds its most recent local subgradient scaled by |N (i)| + 1. After that,
the dual variables zi is projected to the primal space to obtain xi.

To implement RW-DDA, each node only needs to know its neighborhood information, which makes the algorithm
robust to the change in network topology, frequently resulting from node failure or edge malfunction. As possibly
inferred from the name, our RW-DDA method robustify the distributed dual averaging (DDA) method [2], based on
the theory of random walk over undirected graph [9].

Algorithm 1 Random Walk Distributed Dual Averaging (RW-DDA) Method
Input: a predetermined nonnegative nonincreasing sequence {↵(t)}.
Initialization: xi(0) = zi(0) = 0, for all i 2 [n].
for t = 0, 1, 2, . . . , do

1. Subgradient calculation:
gi(t) 2 @fi(xi(t)), for each agent i. (3.1)

2. Dual updates:
zi(t+ 1) =

P
j2N (i)[{i} zj(t) + gi(t)

|N (i)|+ 1
, for each agent i. (3.2)

3. Primal updates:
xi(t+ 1) = PX [�↵(t)zi(t+ 1)] := arg min

x2X
kx+ ↵(t)zi(t+ 1)k2 , for each agent i. (3.3)

end for

4 Convergence Analysis

In this section, we will provide an O(1/
p
t)-convergence result for Algorithm 1 when ↵(t) is properly chosen as

O(1/
p
t). But prior to that, we will make an intuitive explanation to help understand the correctness of RW-DDA.

For notational convenience, we will define the matrix P 2 Rn⇥n with Pij being 1
|N (i)+1| for j 2 N (i) [ {i} and 0

otherwise. Clearly P is a row stochastic matrix, i.e. the sum of every row of P equals 1. We will also define the vector
⇡ 2 Rd with the i-th entry ⇡i being |N (i)|+1

� , where � := 2|V| + |E|. It can easily verified that ⇡ is a probability
vector, i.e. ⇡i > 0 and

P
i2[n] ⇡i = 1. With these notations, we are able to express (3.2) in a terser way. Imagine

X ✓ R, so xi(t), zi(t) and gi(t) are now all scalars. Then we can rewrite the update (3.2) as

z(t+ 1) = Pz(t) +
1

�
diag (⇡)�1

g(t) =
1

�

tX

s=0

P

sdiag (⇡)�1
g(t� s), (4.1)
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scaled gradient averaging 

 -th iteration 
 
! Broadcast:

Every node   broadcasts                

  to its neighbors  

 
! Self-update:

Every node    in parallel  
updates 




 
! Row-stochastic consensus protocol

 
 



! The stationary dist. 


–       : the influence that node      plays in the network

–    need to scale the gradient    


 
!  Exact       is hard to obtain locally

!  But 

–  random walk over undirected graph

–  

–  sufficient for this scaling purpose


 


