
Random Walk Distributed Dual Averaging Algorithm
Cun Mu*, Asim Kadav, Erik Kruus, Donald Goldfarb* and Martin Renqiang Min

NEC Labs, Princeton Columbia University*

Parallel learning over peer nodes without a central
coordinating resource.

Performed over a network of sensors, mobile
devices or geographically separated data centers.

Network is robust to failure due to lack of a central
coordinating resource

Our Solution: RWDDA
Random-Walk Distributed Dual Averaging

• Row stochastic consensus protocol
• Robustify DDA[4] against node/edge failures
• Each node receives dual updates only from neighbors
• Borrows basic theories in random-walk over undirected graph

Insights into RWDDA Results
We integrate RWDDA with MALT and compare
with model averaging with SVM[3] with the RCV1
dataset, both implemented over MALT[1].

We demonstrate that RWDDA is a robust algorithm for
decentralized consensus optimization. We find that it
provides smooth convergence for non-iid data and in
the presence of link failures.

References and Related Work

[1] H. Li et. al., MALT: Distributed Data-parallelism for Existing ML
Applications. Eurosys 2015.
[2] C. Mu et. al., Random Walk Distributed Dual Averaging Method For
Decentralized Consensus Optimization, NIPS OPT 2015.
[3] L. Bottou. Large Scale Machine Learning with SGD. COMPSTAT 2010.
[4] A. Agrawal et. al., Distributed Dual Averaging in networks. NIPS 2010.
[5] K. Tsianos et. al., Consensus-based Distributed Optimization: Practical
Issues and Applications in Large-scale Learning, CCC 2012.

Peer-to-peer parallel learning

• Non-iid data: The peer replicas may process non independent
and identically distributed datasets. For example, physical
sensors or data centers may collect biased samples.

• Random link failures: There may be intermittent link failures that
may affect convergence for large scale learning

Design
requirements RWDDA's solution

Efficient
communication

RWDDA communication requirement is
only one-sided (no hand-shake
required). This is useful for
asynchronous learning and using
RDMA protocols that provide high
speed one-sided semantics.

Robust

The algorithm is robust to change in
network topology or non-iid data.
RWDDA only requires nodes to
communicate to its neighbors. It can
self-adapt the scaling parameter.

Provable
convergence

We establish (1/sq. root (t))
convergence for the convex case. For
the convergence analysis, please see
our paper[2].

Extensible

RWDDA is extensible to stochastic
(sub) gradient and regularizers.
Furthermore, asynchronous
implementation is straightforward.

Challenges in peer-to-peer learning

(b) non-i.i.d. data with
random link failures

(a) non-i.i.d data

Figure (a) shows training error vs time for RW-DDA and model averaging for six ranks for non-iid
dataset. Each machine communicates z after processing a local epoch (slightly over 3300 examples)

Figure (b) shows the same experiment with intermittent link failures. Each machine communicates z
after processing a local epoch (slightly over 3300 examples). We find RW-DDA method to be stable and
faster to converge especially in the presence of failures.

Algorithm description

Algorithm description: For the t-th iteration, there are two steps: broadcasting step and self-updating
step. In the broadcasting step, every node i broadcasts its dual variable z_i to all its neighbors. In the
subsequent self-updating step, every node in parallel does the following. It first averages the received
dual variables and its gradient at x_i(t). And then update x_i(t) by simply negative scaling the dual
variable.

Algorithm insights (i): Our dual update consists of two components, one is the averaging component,
and the other is the gradient update component. We write the averaging component compactly in a
matrix form Pz(t), where z(t) represents dual variables. We scale the gradient to make dual averaging[4]
robust against communication delays. Furthermore, P is a consensus matrix that is row stochastic.

Gradient scaling in RWDDA

Algorithm insights (ii) : Since P is row stochastic, is a rank-1 matrix with all rows identical,
say . Specifically, (i) represents the influence node i plays in the network during the optimization
steps. Since, we want each node to have equal influence we scale:

Update steps in RWDDA

Calculating P locally in RWDDA

Algorithm insights (iii) : Exact is hard to obtain locally. This means that when network topology
changes, we may have to recalculate with central coordination as in [5]. To avoid this situation, we
use the theory of random walk over undirected graph, to get by just using the local information.

Computation
challenges Optimizing tricks

Computing the
full gradient at
each step is
expensive

We only compute the sparse gradient
and separately correct the regularizer.

Communicating
z after each

iteration strains
the network

We only send z after nods locally
process a batch (500-5000) and adjust
the learning rate to account for this
batched communication.

Re-calculating z
is expensive

We maintain a running sum average
over the dual, and only compute this
sum only during reduce (i.e. when z
parameters arrive).

Goal: Provide a distributed consensus algorithm that provably
converges in presence of non-iid data and link failures

2 Problem Statement

In mathematical terms, the optimization problem is defined on a connected undirected network and solved by n agents
(computers) collectively,

min
x2X✓Rd

f̄(x) :=
nX

i=1

fi(x). (2.1)

The feasible set X is a closed and convex set in Rd and is commonly known by all agents, whereas fi : X 2 R
is a convex function privately known by the agent i. Throughout the paper, we also assume that fi is L-Lipschitz
continuous over X with respect to the Euclidean norm k·k. The network G = (N , E), with the node set N =
[n] := {1, 2, · · · , n} and the edge set E ✓ N ⇥N , specifies the topological structure on how the information can be
spread among agents through local agent interactions over time. In specific, each agent i can only send and retrieve
information from its neighbors N (i) := {j | (j, i) 2 E} and himself.

3 RW-DDA method

Our random-walk distributed dual averaging (RW-DDA) method is shown step-by-step in Algorithm 1. Literally, in
RW-DDA, each node i keeps a local estimate xi and a dual variable zi maintaining an accumulated subgradient. At
iteration t, to update zi, each node needs to collect the z-values of its neighbors, forms a convex combination with
equal weight of the received information and adds its most recent local subgradient scaled by |N (i)| + 1. After that,
the dual variables zi is projected to the primal space to obtain xi.

To implement RW-DDA, each node only needs to know its neighborhood information, which makes the algorithm
robust to the change in network topology, frequently resulting from node failure or edge malfunction. As possibly
inferred from the name, our RW-DDA method robustify the distributed dual averaging (DDA) method [2], based on
the theory of random walk over undirected graph [9].

Algorithm 1 Random Walk Distributed Dual Averaging (RW-DDA) Method
Input: a predetermined nonnegative nonincreasing sequence {↵(t)}.
Initialization: xi(0) = zi(0) = 0, for all i 2 [n].
for t = 0, 1, 2, . . . , do

1. Subgradient calculation:
gi(t) 2 @fi(xi(t)), for each agent i. (3.1)

2. Dual updates:
zi(t+ 1) =

P
j2N (i)[{i} zj(t) + gi(t)

|N (i)|+ 1
, for each agent i. (3.2)

3. Primal updates:
xi(t+ 1) = PX [�↵(t)zi(t+ 1)] := arg min

x2X
kx+ ↵(t)zi(t+ 1)k2 , for each agent i. (3.3)

end for

4 Convergence Analysis

In this section, we will provide an O(1/
p
t)-convergence result for Algorithm 1 when ↵(t) is properly chosen as

O(1/
p
t). But prior to that, we will make an intuitive explanation to help understand the correctness of RW-DDA.

For notational convenience, we will define the matrix P 2 Rn⇥n with Pij being 1
|N (i)+1| for j 2 N (i) [{i} and 0

otherwise. Clearly P is a row stochastic matrix, i.e. the sum of every row of P equals 1. We will also define the vector
⇡ 2 Rd with the i-th entry ⇡i being |N (i)|+1

� , where � := 2|V| + |E|. It can easily verified that ⇡ is a probability
vector, i.e. ⇡i > 0 and

P
i2[n] ⇡i = 1. With these notations, we are able to express (3.2) in a terser way. Imagine

X ✓ R, so xi(t), zi(t) and gi(t) are now all scalars. Then we can rewrite the update (3.2) as

z(t+ 1) = Pz(t) +
1

�
diag (⇡)�1

g(t) =
1

�

tX

s=0

P

sdiag (⇡)�1
g(t� s), (4.1)

2

scaled gradient averaging

 -th iteration

! Broadcast:

Every node broadcasts

 to its neighbors

! Self-update:

Every node in parallel
updates

! Row-stochastic consensus protocol

! The stationary dist.

–  : the influence that node plays in the network

–  need to scale the gradient

!  Exact is hard to obtain locally

!  But

–  random walk over undirected graph

– 

–  sufficient for this scaling purpose

